Visualization and Analysis of Eddies in a Global Ocean Simulation

We present analysis and visualization of flow data from a high‐resolution simulation of the dynamical behavior of the global ocean. Of particular scientific interest are coherent vortical features called mesoscale eddies. We first extract high‐vorticity features using a metric from the oceanography community called the Okubo‐Weiss parameter. We then use a new circularity criterion to differentiate eddies from other non‐eddy features like meanders in strong background currents. From these data, we generate visualizations showing the three‐dimensional structure and distribution of ocean eddies. Additionally, the characteristics of each eddy are recorded to form an eddy census that can be used to investigate correlations among variables such as eddy thickness, depth, and location. From these analyses, we gain insight into the role eddies play in large‐scale ocean circulation.

[1]  Patrick J. Hogan,et al.  The Gulf Stream Pathway and the Impacts of the Eddy-Driven Abyssal Circulation and the Deep Western Boundary Current , 2008 .

[2]  Robert S. Laramee,et al.  Asymmetric Tensor Analysis for Flow Visualization , 2009, IEEE Transactions on Visualization and Computer Graphics.

[3]  M. Maltrud,et al.  An eddy resolving global 1/10° ocean simulation , 2005 .

[4]  Frank O. Bryan,et al.  Boundary impulse response functions in a century-long eddying global ocean simulation , 2010 .

[5]  Andrew C. Thomas,et al.  A census of oceanic anticyclonic eddies in the Gulf of Alaska , 2008 .

[6]  Zhifan Zhu,et al.  Extracting and Visualizing Ocean Eddies in Time--Varying Flow Fields , 2000 .

[7]  Robert S. Laramee,et al.  The State of the Art in Flow Visualisation: Feature Extraction and Tracking , 2003, Comput. Graph. Forum.

[8]  James F. O'Brien,et al.  Case study: Visualizing ocean flow vertical motions using Lagrangian-Eulerian time surfaces , 2002, IEEE Visualization, 2002. VIS 2002..

[9]  R. C. Malone,et al.  Parallel ocean general circulation modeling , 1992 .

[10]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[11]  Ramprasad Balasubramanian,et al.  Segmentation and tracking of mesoscale eddies in numeric ocean models , 2005, IEEE International Conference on Image Processing 2005.

[12]  Xavier Tricoche,et al.  Topological Methods for Visualizing Vortical Flows , 2009, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration.

[13]  M. Maltrud,et al.  Numerical simulation of the North Atlantic Ocean at 1/10 degrees , 2000 .

[14]  Paola Cessi,et al.  What Sets the Strength of the Middepth Stratification and Overturning Circulation in Eddying Ocean Models , 2010 .

[15]  Nicholas R. Bates,et al.  Eddy transport of organic carbon and nutrients from the Chukchi Shelf : impact on the upper halocline of the western Arctic Ocean , 2007 .

[16]  Jordi Font,et al.  Non-Gaussian Velocity Probability Density Functions: An Altimetric Perspective of the Mediterranean Sea , 2006 .

[17]  Xin Wang,et al.  Tracking and Visualizing Turbulent 3D Features , 1997, IEEE Trans. Vis. Comput. Graph..

[18]  Richard Smith,et al.  Global Ocean Circulation from Satellite Altimetry and High-Resolution Computer Simulation , 1996 .

[19]  Raghu Machiraju,et al.  A Novel Approach To Vortex Core Region Detection , 2002, VisSym.

[20]  A. Ōkubo Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences , 1970 .

[21]  Jong Hwan Yoon,et al.  The Vertical Structure of Eddy Heat Transport Simulated by an Eddy-Resolving OGCM , 2010 .

[22]  Tommy D. Dickey,et al.  A Vector Geometry–Based Eddy Detection Algorithm and Its Application to a High-Resolution Numerical Model Product and High-Frequency Radar Surface Velocities in the Southern California Bight , 2010 .

[23]  Robert S. Laramee,et al.  The State of the Art , 2015 .

[24]  J. R. E. Lutjeharms,et al.  Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation , 2008, Nature.

[25]  Lambertus Hesselink,et al.  Visualizing vector field topology in fluid flows , 1991, IEEE Computer Graphics and Applications.

[26]  P. Moin,et al.  Eddies, streams, and convergence zones in turbulent flows , 1988 .

[27]  William R. Holland,et al.  On the Generation of Mesoscale Eddies and their Contribution to the OceanicGeneral Circulation. I. A Preliminary Numerical Experiment , 1975 .

[28]  R. Rosso,et al.  Wind control of storm‐triggered shallow landslides , 2007 .

[29]  K. Bryan A Numerical Method for the Study of the Circulation of the World Ocean , 1997 .

[30]  Scott C. Doney,et al.  Impact of eddy–wind interaction on eddy demographics and phytoplankton community structure in a model of the North Atlantic Ocean , 2011 .

[31]  Tong Lee,et al.  Eddy‐induced meridional heat transport in the ocean , 2008 .

[32]  J. Weiss The dynamics of entropy transfer in two-dimensional hydrodynamics , 1991 .

[33]  Alain Vincent,et al.  An algorithm for space recognition and time tracking of vorticity tubes in turbulence , 1992, CVGIP Image Underst..

[34]  Jochem Marotzke,et al.  The Oceanic Eddy Heat Transport , 2002 .

[35]  David C. Banks,et al.  Vortex tubes in turbulent flows: identification, representation, reconstruction , 1994, Proceedings Visualization '94.

[36]  D. Chelton,et al.  Global observations of large oceanic eddies , 2007 .

[37]  Darryn W. Waugh,et al.  Spatial Variations of Stirring in the Surface Ocean: A Case Study of the Tasman Sea , 2006 .

[38]  Harry Leach,et al.  Upper-Ocean Eddy Transports of Heat, Potential Vorticity, and Volume in the Northeastern North Atlantic—“Vivaldi 1991” , 2002 .

[39]  Frits H. Post,et al.  Detection, quantification, and tracking of vortices using streamline geometry , 2000, Comput. Graph..

[40]  Mark A. Maslin,et al.  Magnetic susceptibility variations in Upper Pleistocene deep-sea sediments of the NE Atlantic: implications for ice-rafting and paleocirculation at the last glacial maximum , 1995 .