Nonlinear analysis of near-wall turbulence time series

[1]  Luca Ridolfi,et al.  Nonlinear analysis of river flow time sequences , 1997 .

[2]  Michael S. Jolly Exponential Attractors for Dissipative Evolution Equations (A. Eden, C. Foias, B. Nicolaenko, and R. Témam) , 1996, SIAM Rev..

[3]  S. Balachandar,et al.  Autogeneration of near-wall vortical structures in channel flow , 1996 .

[4]  A. Porporato,et al.  ANALYSIS OF RANDOMLY SAMPLED DATA USING FUZZY AND NONLINEAR TECHNIQUES , 1996 .

[5]  F. Durst,et al.  LDA measurements in the near-wall region of a turbulent pipe flow , 1995, Journal of Fluid Mechanics.

[6]  A. Eden,et al.  Exponential Attractors for Dissipative Evolution Equations , 1995 .

[7]  John Kim,et al.  Regeneration mechanisms of near-wall turbulence structures , 1995, Journal of Fluid Mechanics.

[8]  J. Healey Time series analysis of physical systems possessing homoclinicity , 1995 .

[9]  Mohamed Gad-el-Hak,et al.  Interactive control of turbulent boundary layers - A futuristic overview , 1994 .

[10]  L. Sirovich,et al.  Reply to ‘‘Observations regarding ‘Coherence and chaos in a model of turbulent boundary layer’ by X. Zhou and L. Sirovich [Phys. Fluids A 4, 2855 (1992)]’’ , 1994 .

[11]  Anastasios A. Tsonis,et al.  Searching for determinism in observed data: a review of the issues involved , 1994 .

[12]  Sirovich,et al.  Dynamical model of wall-bounded turbulence. , 1994, Physical review letters.

[13]  L. Ridolfi,et al.  ON THE HYPOTHESIS OF SELF-SIMILARITY FOR THE VELOCITY DISTRIBUTION IN TURBULENT FLOWS , 1994 .

[14]  A. Porporato,et al.  AUTOCORRELATION AND RELATED QUANTITIES OF THE LONGITUDINAL TURBULENCE VELOCITY COMPONENT. AN EXPERIMENTAL INVESTIGATION IN A WATER FLOW IN A SMOOTH PIPE , 1994 .

[15]  J. Healey,et al.  A dynamical systems approach to the early stages of boundary-layer transition , 1993, Journal of Fluid Mechanics.

[16]  L. Tsimring,et al.  The analysis of observed chaotic data in physical systems , 1993 .

[17]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[18]  Albano,et al.  Filtered noise can mimic low-dimensional chaotic attractors. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  P. Grassberger,et al.  On noise reduction methods for chaotic data. , 1993, Chaos.

[20]  Nadine Aubry,et al.  Mode interaction models for near-wall turbulence , 1992, Journal of Fluid Mechanics.

[21]  Lawrence Sirovich,et al.  Coherence and chaos in a model of turbulent boundary layer , 1992 .

[22]  Gerd Pfister,et al.  Comparison of algorithms calculating optimal embedding parameters for delay time coordinates , 1992 .

[23]  Parviz Moin,et al.  The dimension of attractors underlying periodic turbulent Poiseuille flow , 1992, Journal of Fluid Mechanics.

[24]  Pfister,et al.  Optimal delay time and embedding dimension for delay-time coordinates by analysis of the global static and local dynamical behavior of strange attractors. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[25]  D. Ruelle,et al.  Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems , 1992 .

[26]  W. Ditto,et al.  Chaos: From Theory to Applications , 1992 .

[27]  P. Grassberger,et al.  A simple noise-reduction method for real data , 1991 .

[28]  P. Grassberger,et al.  NONLINEAR TIME SEQUENCE ANALYSIS , 1991 .

[29]  J. D. Farmer,et al.  State space reconstruction in the presence of noise" Physica D , 1991 .

[30]  P. Moin,et al.  The minimal flow unit in near-wall turbulence , 1991, Journal of Fluid Mechanics.

[31]  Roland Grappin,et al.  Lyapunov exponents and the dimension of periodic incompressible Navier-Stokes flows - Numerical measurements , 1991 .

[32]  S. K. Robinson,et al.  Coherent Motions in the Turbulent Boundary Layer , 1991 .

[33]  P. Manneville From Chaos to Turbulence in Fluid Dynamics , 1991 .

[34]  C. Essex,et al.  Correlation dimension and systematic geometric effects. , 1990, Physical Review A. Atomic, Molecular, and Optical Physics.

[35]  Gerd Pfister,et al.  Optimal Reconstruction of Strange Attractors from Purely Geometrical Arguments , 1990 .

[36]  P. Grassberger An optimized box-assisted algorithm for fractal dimensions , 1990 .

[37]  The nonlinear phase of wave growth leading to chaos and breakdown to turbulence in a boundary layer as an example of an open system , 1990, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[38]  George Sugihara,et al.  Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series , 1990, Nature.

[39]  M. Gharib,et al.  Transition from order to chaos in the wake of an airfoil , 1990, Journal of Fluid Mechanics.

[40]  P. Holmes Can dynamical systems approach turbulence , 1990 .

[41]  Y.-N. Huang,et al.  On the transition to turbulence in pipe flow , 1989 .

[42]  T. Mullin,et al.  An experimental observation of chaos arising from the interaction of steady and time-dependent flows , 1989, Nature.

[43]  Martin Casdagli,et al.  Nonlinear prediction of chaotic time series , 1989 .

[44]  J. Doyne Farmer,et al.  Exploiting Chaos to Predict the Future and Reduce Noise , 1989 .

[45]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[46]  David A. Rand,et al.  Turbulent transport and the random occurrence of coherent events , 1988 .

[47]  A. V. Gaponov-Grekhov,et al.  The onset and spatial development of turbulence in flow systems , 1988 .

[48]  Nadine Aubry,et al.  The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.

[49]  Gerd Pfister,et al.  Bifurcation phenomena in Taylor-Couette flow in a very short annulus , 1988, Journal of Fluid Mechanics.

[50]  Broggi,et al.  Dimension increase in filtered chaotic signals. , 1988, Physical review letters.

[51]  Farmer,et al.  Predicting chaotic time series. , 1987, Physical review letters.

[52]  M. Sieber Experiments on the attractor-dimension for turbulent pipe flow , 1987 .

[53]  Swinney,et al.  Strange attractors in weakly turbulent Couette-Taylor flow. , 1987, Physical review. A, General physics.

[54]  L. Sirovich,et al.  Coherent structures and chaos: A model problem , 1987 .

[55]  W. G. Tiederman,et al.  Timescale and structure of ejections and bursts in turbulent channel flows , 1987, Journal of Fluid Mechanics.

[56]  K. Sreenivasan,et al.  Transition intermittency in open flows, and intermittency routes to chaos , 1986 .

[57]  Theiler,et al.  Spurious dimension from correlation algorithms applied to limited time-series data. , 1986, Physical review. A, General physics.

[58]  Y. Pomeau,et al.  Order within chaos , 1986 .

[59]  G. T. Chapman,et al.  Characterizing Turbulent Channel Flow , 1986 .

[60]  Richard K. Moore,et al.  From theory to applications , 1986 .

[61]  Chaotic dynamics in a periodically excited air jet. , 1985, Physical review letters.

[62]  R. Temam,et al.  Determining modes and fractal dimension of turbulent flows , 1985, Journal of Fluid Mechanics.

[63]  P. Atten,et al.  Détermination de dimension d'attracteurs pour différents écoulements , 1984 .

[64]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[65]  J. Maurer,et al.  A Rayleigh Bénard Experiment: Helium in a Small Box , 1982 .

[66]  F. Takens Detecting strange attractors in turbulence , 1981 .

[67]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[68]  J. Lumley,et al.  A First Course in Turbulence , 1972 .