Cooperative ETS transcription factors enforce adult endothelial cell fate and cardiovascular homeostasis

[1]  Moshi Song,et al.  Single-Cell Analysis Reveals Transcriptomic Reprogramming in Aging Cardiovascular Endothelial Cells , 2022, Frontiers in Cardiovascular Medicine.

[2]  Joshua D. Wythe,et al.  Bone marrow endothelial dysfunction promotes myeloid cell expansion in cardiovascular disease , 2021, Nature Cardiovascular Research.

[3]  Duc-Huy T. Nguyen,et al.  Pluripotent stem cell-derived epithelium misidentified as brain microvascular endothelium requires ETS factors to acquire vascular fate , 2021, Proceedings of the National Academy of Sciences.

[4]  P. Vincent,et al.  MEF2 (Myocyte Enhancer Factor 2) Is Essential for Endothelial Homeostasis and the Atheroprotective Gene Expression Program. , 2021, Arteriosclerosis, thrombosis, and vascular biology.

[5]  M. Trojanowska,et al.  FLI1 and ERG protein degradation is regulated via Cathepsin B lysosomal pathway in human dermal microvascular endothelial cells , 2020, Microcirculation.

[6]  Philip A. Ewels,et al.  The nf-core framework for community-curated bioinformatics pipelines , 2020, Nature Biotechnology.

[7]  V. Fellman,et al.  A sensitive assay for dNTPs based on long synthetic oligonucleotides, EvaGreen dye and inhibitor-resistant high-fidelity DNA polymerase , 2019, bioRxiv.

[8]  M. Looso,et al.  Beyond accessibility: ATAC-seq footprinting unravels kinetics of transcription factor binding during zygotic genome activation , 2019, bioRxiv.

[9]  S. Rafii,et al.  Molecular determinants of nephron vascular specialization in the kidney , 2019, Nature Communications.

[10]  Phillip A. Richmond,et al.  JASPAR 2020: update of the open-access database of transcription factor binding profiles , 2019, Nucleic Acids Res..

[11]  V. Muzykantov,et al.  The transcription factor ERG regulates a low shear stress-induced anti-thrombotic pathway in the microvasculature , 2019, Nature Communications.

[12]  P. Carmeliet,et al.  The metabolic engine of endothelial cells , 2019, Nature metabolism.

[13]  J. Gulcher,et al.  Endothelial ERK1/2 signaling maintains integrity of the quiescent endothelium , 2019, The Journal of experimental medicine.

[14]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[15]  Mark Ziemann,et al.  Digital expression explorer 2: a repository of uniformly processed RNA sequencing data , 2019, GigaScience.

[16]  B. Göttgens,et al.  The Transcription Factor ERG Regulates Super-Enhancers Associated With an Endothelial-Specific Gene Expression Program , 2019, Circulation research.

[17]  S. Rafii,et al.  Endothelial cell adaptation in regeneration , 2018, Science.

[18]  H. Aburatani,et al.  Downregulation of ERG and FLI1 expression in endothelial cells triggers endothelial-to-mesenchymal transition , 2018, PLoS genetics.

[19]  Loyal A Goff,et al.  Transcriptional and epigenomic landscapes of CNS and non-CNS vascular endothelial cells , 2018, eLife.

[20]  T. Marwick,et al.  Improving the quality of preclinical research echocardiography: observations, training, and guidelines for measurement. , 2018, American journal of physiology. Heart and circulatory physiology.

[21]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[22]  V. Beneš,et al.  Single-cell transcriptomics reveals a new dynamical function of transcription factors during embryonic hematopoiesis , 2018, eLife.

[23]  Q. Wells,et al.  A Metabolic Basis for Endothelial-to-Mesenchymal Transition. , 2018, Molecular cell.

[24]  Michael G. Poulos,et al.  Endothelial transplantation rejuvenates aged hematopoietic stem cell function , 2017, The Journal of clinical investigation.

[25]  D. Adams,et al.  Dynamic regulation of canonical TGFβ signalling by endothelial transcription factor ERG protects from liver fibrogenesis , 2017, Nature Communications.

[26]  Nicholas A. Sinnott-Armstrong,et al.  An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues , 2017, Nature Methods.

[27]  H. Gerhardt,et al.  The endothelial transcription factor ERG mediates Angiopoietin-1-dependent control of Notch signalling and vascular stability , 2017, Nature Communications.

[28]  A. Looney,et al.  Synergistic Role of Endothelial ERG and FLI1 in Mediating Pulmonary Vascular Homeostasis , 2017, American journal of respiratory cell and molecular biology.

[29]  James R. Springstead,et al.  Transcriptional networks specifying homeostatic and inflammatory programs of gene expression in human aortic endothelial cells , 2017, eLife.

[30]  H. Jo,et al.  KLF2 and KLF4 control endothelial identity and vascular integrity. , 2017, JCI insight.

[31]  O. Elemento,et al.  Sox17 drives functional engraftment of endothelium converted from non-vascular cells , 2017, Nature Communications.

[32]  Michael D. Wilson,et al.  Dynamic regulation of VEGF-inducible genes by an ERK/ERG/p300 transcriptional network , 2017, Development.

[33]  X. Hao,et al.  A screen for Fli-1 transcriptional modulators identifies PKC agonists that induce erythroid to megakaryocytic differentiation and suppress leukemogenesis , 2016, Oncotarget.

[34]  G. Gilkeson,et al.  Acetylation impacts Fli‐1‐driven regulation of granulocyte colony stimulating factor , 2016, European journal of immunology.

[35]  A. Shah,et al.  Regulation of endothelial homeostasis, vascular development and angiogenesis by the transcription factor ERG , 2016, Vascular pharmacology.

[36]  Charles P. Lin,et al.  Distinct bone marrow blood vessels differentially regulate hematopoiesis , 2016, Nature.

[37]  Fidel Ramírez,et al.  deepTools2: a next generation web server for deep-sequencing data analysis , 2016, Nucleic Acids Res..

[38]  S. Rafii,et al.  Angiocrine functions of organ-specific endothelial cells , 2016, Nature.

[39]  A. Orekhov,et al.  Endothelial Barrier and Its Abnormalities in Cardiovascular Disease , 2015, Front. Physiol..

[40]  Fátima Sánchez-Cabo,et al.  GOplot: an R package for visually combining expression data with functional analysis , 2015, Bioinform..

[41]  B. Göttgens,et al.  The Endothelial Transcription Factor ERG Promotes Vascular Stability and Growth through Wnt/β-Catenin Signaling , 2015, Developmental cell.

[42]  Shuifang Zhu,et al.  Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads , 2014, BMC Bioinformatics.

[43]  J. Shelton,et al.  Fli1 Acts Downstream of Etv2 to Govern Cell Survival and Vascular Homeostasis via Positive Autoregulation , 2014, Circulation research.

[44]  Anton J. Enright,et al.  Kraken: A set of tools for quality control and analysis of high-throughput sequence data , 2013, Methods.

[45]  Olivier Elemento,et al.  Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. , 2013, Developmental cell.

[46]  Olivier Elemento,et al.  Efficient Direct Reprogramming of Mature Amniotic Cells into Endothelial Cells by ETS Factors and TGFβ Suppression , 2012, Cell.

[47]  B. Göttgens,et al.  The Transcription Factor Erg Controls Endothelial Cell Quiescence by Repressing Activity of Nuclear Factor (NF)-κB p65* , 2012, The Journal of Biological Chemistry.

[48]  M. Zvelebil,et al.  The transcription factor Erg regulates expression of histone deacetylase 6 and multiple pathways involved in endothelial cell migration and angiogenesis. , 2012, Blood.

[49]  P. Evans,et al.  The Transcription Factor Erg Inhibits Vascular Inflammation by Repressing NF-&kgr;B Activation and Proinflammatory Gene Expression in Endothelial Cells , 2011, Arteriosclerosis, thrombosis, and vascular biology.

[50]  F. Morlé,et al.  Inducible Fli-1 gene deletion in adult mice modifies several myeloid lineage commitment decisions and accelerates proliferation arrest and terminal erythrocytic differentiation. , 2010, Blood.

[51]  A. Barberis,et al.  Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis , 2010, Nature.

[52]  D. Watson,et al.  Endothelial Fli1 deficiency impairs vascular homeostasis: a role in scleroderma vasculopathy. , 2010, The American journal of pathology.

[53]  M. Bhasin,et al.  ERG is required for the differentiation of embryonic stem cells along the endothelial lineage , 2009, BMC Developmental Biology.

[54]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[55]  A. Visel,et al.  Combinatorial Regulation of Endothelial Gene Expression by Ets and Forkhead Transcription Factors , 2008, Cell.

[56]  E. Dejana,et al.  Transcription factor Erg regulates angiogenesis and endothelial apoptosis through VE-cadherin. , 2008, Blood.

[57]  Nicodemus Tedla,et al.  Suppression of vascular permeability and inflammation by targeting of the transcription factor c-Jun , 2006, Nature Biotechnology.

[58]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Yuchuan Liu,et al.  Thrombin and Tumor Necrosis Factor α Synergistically Stimulate Tissue Factor Expression in Human Endothelial Cells , 2004, Journal of Biological Chemistry.

[60]  M. Daly,et al.  PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes , 2003, Nature Genetics.

[61]  N. Lou,et al.  The Fli‐1 transcription factor is a critical regulator for controlling the expression of chemokine C‐X‐C motif ligand 2 (CXCL2) , 2017, Molecular immunology.

[62]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..