Aero-engine turbine blade life assessment using the Neu/Sehitoglu damage model
暂无分享,去创建一个
Riti Singh | Panagiotis Laskaridis | S. Eshati | Abdullahi O. Abu | A. O. Abu | Riti Singh | Panagiotis Laskaridis | S. Eshati | A. Abu
[1] N. S. Swansson,et al. Thermo-Mechanical Fatigue Life Prediction: A Critical Review , 1998 .
[2] Pericles Pilidis,et al. The Influence of Humidity on the Creep Life of a High Pressure Gas Turbine Blade: Part I—Heat Transfer Model , 2012 .
[3] Robert L. Amaro,et al. On the Development of Physically Based Life Prediction Models in the Thermo Mechanical Fatigue of Ni-Base Superalloys , 2011 .
[4] Ali P. Gordon,et al. Crack Initiation Modeling of a Directionally-Solidified Ni-base Superalloy , 2006 .
[5] Henry Cohen,et al. Gas turbine theory , 1973 .
[6] Robert L. Amaro,et al. On thermo-mechanical fatigue in single crystal Ni-base superalloys , 2010 .
[7] P.Pilidis,et al. An Integrated Engine - Aircraft Perfomance Platform for Assessing New Technologies in Aeronautics , 2005 .
[8] Jean-Louis Chaboche,et al. A NON‐LINEAR CONTINUOUS FATIGUE DAMAGE MODEL , 1988 .
[9] Frank P. Incropera,et al. Fundamentals of Heat and Mass Transfer , 1981 .
[10] H. J. Maier,et al. Thermomechanical fatigue—damage mechanisms and mechanism-based life prediction methods , 2003 .
[11] Martin Riedler,et al. Thermo-mechanical fatigue life assessment of aluminium components using the damage rate model of Sehitoglu , 2008 .
[12] Huseyin Sehitoglu,et al. Thermomechanical fatigue, oxidation, and Creep: Part II. Life prediction , 1989 .
[13] M. Marchionni,et al. Thermo‐mechanical fatigue – the route to standardisation (“TMF‐Standard” project) , 2006 .