meso,meso‐Linked and Triply Fused Diporphyrins with Mixed‐Metal Ions: Synthesis and Electrochemical Investigations

A novel series of biaryl-type, meso,meso-linked and planar, triply fused diporphyrin derivatives was prepared and fully characterized together with the corresponding monoporphyrin control compounds. They feature peripheral meso-3-cyanophenyl and meso-3,5-cyanophenyl groups, which have previously been shown to undergo transformation into malonates without perturbation of the porphyrin core and subsequent Bingel addition to fullerene C60. The tetrapyrrolic metal binding sites in the diporphyrin arrays are either complexed to two ZnII or CuII ions, or, in a mixed coordination, to one CuII and one ZnII ion; alternatively, one or both sites remain unoccupied. The interaction between the differentially metallated porphyrin rings was systematically investigated by UV/Vis spectroscopy and electrochemistry. Cyclic voltammetry and differential pulse voltammetry reveal that electronic communication in the diporphyrin arrays varies strongly with the mode of connection (meso,meso-linked or triply fused), the nature of the bound metal ion, and the number of peripheral cyano groups. The electrochemical HOMO–LUMO gap in both series of diporphyrins is strongly but differentially affected by the choice of the inserted metal ions. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)

[1]  F. Diederich,et al.  Triply fused Zn(II)-porphyrin oligomers: synthesis, properties, and supramolecular interactions with single-walled carbon nanotubes (SWNTs). , 2006, Chemistry.

[2]  Dongho Kim,et al.  Synthesis of Doubly Strapped meso–meso‐Linked Porphyrin Arrays and Triply Linked Conjugated Porphyrin Tapes , 2006 .

[3]  A. Osuka,et al.  Metalation chemistry of meso-aryl-substituted expanded porphyrins , 2006 .

[4]  Hiroshi Hata,et al.  The Importance of a β–β Bond for Long‐Range Antiferromagnetic Coupling in Directly Linked Copper(II) and Silver(II) Diporphyrins , 2005 .

[5]  F. Diederich,et al.  Oligoporphyrin arrays conjugated to [60] fullerene: Preparation, NMR analysis, and photophysical and electrochemical properties , 2005 .

[6]  N. Aratani,et al.  Giant meso-meso-linked porphyrin arrays of micrometer molecular length and their fabrication. , 2005, Chemistry.

[7]  F. Diederich,et al.  Photophysical and electrochemical properties of meso, meso-linked oligoporphyrin rods with appended fullerene terminals. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[8]  A. Osuka,et al.  meso-Alkyl-substituted meso-meso linked diporphyrins and meso-alkyl-substituted meso-meso, beta-beta, beta-beta triply linked diporphyrins. , 2005, The Journal of organic chemistry.

[9]  C. Reed,et al.  Fullerene-porphyrin constructs. , 2005, Accounts of chemical research.

[10]  Dongho Kim,et al.  Directly meso-meso linked porphyrin rings: synthesis, characterization, and efficient excitation energy hopping. , 2004, Journal of the American Chemical Society.

[11]  Paul A. Karr,et al.  Electrochemical, spectral, and computational studies of metalloporphyrin dimers formed by cation complexation of crown ether cavities. , 2004, Inorganic chemistry.

[12]  P. Chmielewski Synthesis and characterization of a directly linked N-confused porphyrin dimer. , 2004, Angewandte Chemie.

[13]  Piotr J. Chmielewski Prof. Synthesis and Characterization of a Directly Linked N-Confused Porphyrin Dimer† , 2004 .

[14]  F. Diederich,et al.  Supramolecular patterned surfaces driven by cooperative assembly of C60 and porphyrins on metal substrates. , 2004, Angewandte Chemie.

[15]  Dongho Kim,et al.  Directly linked porphyrin arrays with tunable excitonic interactions. , 2004, Accounts of chemical research.

[16]  F. Diederich,et al.  Exceptional redox and photophysical properties of a triply fused diporphyrin-C60 conjugate: novel scaffolds for multicharge storage in molecular scale electronics. , 2003, Angewandte Chemie.

[17]  Dongho Kim,et al.  Photophysical Properties of Directly Linked Linear Porphyrin Arrays , 2003 .

[18]  N. Aratani,et al.  Directly linked porphyrin arrays. , 2003, Chemical record.

[19]  J. Lindsey,et al.  Formation of porphyrins in the presence of acid-labile metalloporphyrins: a new route to mixed-metal multiporphyrin arrays. , 2003, Inorganic chemistry.

[20]  N. Aratani,et al.  Metal-dependent regioselective oxidative coupling of 5,10,15-triarylporphyrins with DDQ-Sc(OTf)3 and formation of an oxo-quinoidal porphyrin. , 2003, Organic letters.

[21]  K. Kadish,et al.  Electrochemistry of porphyrins and related macrocycles , 2003 .

[22]  Dongho Kim,et al.  Excitation energy transport processes of porphyrin monomer, dimer, cyclic trimer, and hexamer probed by ultrafast fluorescence anisotropy decay. , 2003, Journal of the American Chemical Society.

[23]  Yasuyuki Nakamura,et al.  Synthesis of meso-β doubly linked porphyrin tapesElectronic supplementary information (ESI) available: 1H NMR spectra. See http://www.rsc.org/suppdata/cc/b3/b302032k/ , 2003 .

[24]  H. Segawa,et al.  Spin alignment of orthogonal pi-radicals of directly meso-linked porphyrin arrays. , 2002, Chemical communications.

[25]  Dongho Kim,et al.  Photophysical properties of porphyrin tapes. , 2002, Journal of the American Chemical Society.

[26]  F. Diederich,et al.  Strong intramolecular chromophore interactions in novel bis([60]fullerene)-oligoporphyrin nanoarrays. , 2002, Chemical communications.

[27]  H. Anderson,et al.  Fusion and planarization of a quinoidal porphyrin dimer. , 2002, Chemical communications.

[28]  Dongho Kim,et al.  Photochemistry of covalently-linked multi-porphyrinic systems , 2002, Journal of Photochemistry and Photobiology C: Photochemistry Reviews.

[29]  F. Tham,et al.  Supramolecular fullerene-porphyrin chemistry. Fullerene complexation by metalated "jaws porphyrin" hosts. , 2002, Journal of the American Chemical Society.

[30]  H. Callot,et al.  Syntheses and optical and electrochemical properties of porphyrin dimers linked by metal ions. , 2002, Journal of the American Chemical Society.

[31]  W. J. Youngblood,et al.  Glaser-mediated synthesis and photophysical characterization of diphenylbutadiyne-linked porphyrin dyads. , 2002, The Journal of organic chemistry.

[32]  A. Osuka,et al.  Discrete Conjugated Porphyrin Tapes with an Exceptionally Small Bandgap , 2002 .

[33]  Roger Guilard,et al.  The porphyrin handbook , 2002 .

[34]  A. Osuka,et al.  Syntheses, structural characterizations, and optical and electrochemical properties of directly fused diporphyrins. , 2001, Journal of the American Chemical Society.

[35]  Akihiko Tsuda,et al.  Fully Conjugated Porphyrin Tapes with Electronic Absorption Bands That Reach into Infrared , 2001, Science.

[36]  T. Aida,et al.  Cyclic Dimers of Metalloporphyrins as Tunable Hosts for Fullerenes: A Remarkable Effect of Rhodium(III) We thank Dr. F. Hasegawa of the Science University of Tokyo for HR-MS measurements. J.-Y.Z. and K.S. thank the JSPS for financial support. , 2001, Angewandte Chemie.

[37]  N. Aratani,et al.  Excited-State Energy Transfer Processes in Phenylene- and Biphenylene-Linked and Directly-Linked Zinc(II) and Free-Base Hybrid Diporphyrins , 2001 .

[38]  H. Cho,et al.  Photophysical properties of long rodlike meso-meso-linked zinc(II) porphyrins investigated by time-resolved laser spectroscopic methods. , 2001, Journal of the American Chemical Society.

[39]  H. Callot,et al.  Porphyrins acting as external and internal ligands: preparation of conjugated trimetallic dimeric porphyrins , 2001 .

[40]  Kuhr,et al.  Investigation of tightly coupled porphyrin arrays comprised of identical monomers for multibit information storage , 2000, The Journal of organic chemistry.

[41]  Yamazaki,et al.  Three-dimensionally arranged windmill and grid porphyrin arrays by AgI-promoted meso-meso block oligomerization , 2000, Chemistry.

[42]  A. Osuka,et al.  Completely Fused Diporphyrins and Triporphyrin , 2000 .

[43]  Dongho Kim,et al.  Extrem lange, diskrete Ketten ausmeso-meso-verknüpften Porphyrinen , 2000 .

[44]  F. Scholz,et al.  Electrochemically driven introduction of copper ions into the ring of 5,10,15,20‐tetraphenyl‐21H, 23H‐porphyrin mechanically attached as solid microparticles to a graphite electrode , 2000 .

[45]  Akihiko Tsuda,et al.  Doppeltmeso-β-verknüpfte Diporphyrine durch Oxidation von 5,10,15-Triaryl-substituierten NiII- und PdII-Porphyrinen , 2000 .

[46]  J. Lindsey,et al.  Effects of Metalation State (Free Base, Mg, Zn, Cd) on Excited-State Energy Transfer in Diarylethyne-Linked Porphyrin Dimers. , 1999, Inorganic chemistry.

[47]  A. Balch,et al.  1H NMR Investigations of Triphenylporphyrin Metal Complexes and Electronic Interactions in Iron(III) Complexes of meso−meso-Linked 5,5‘-Bis(10,15,20-triphenylporphyrin) , 1999 .

[48]  Dongho Kim,et al.  Interplay of Orbital Tuning and Linker Location in Controlling Electronic Communication in Porphyrin Arrays , 1999 .

[49]  A. Osuka,et al.  Vollständig regioselektive Synthese von direkt verknüpftenmeso-meso- undmeso-β-Porphyrindimeren durch elektrochemische Eintopfoxidation von Metalloporphyrinen , 1999 .

[50]  D. Arnold,et al.  Porphyrin dimers linked by conjugated butadiyne bridges: preparations, spectra, voltammetry and reductive spectroelectrochemistry of {[M(OEP)](m-C4)[M(OEP)]} (M2 H4, Co2, Ni2, Cu2, Zn2, Pd2, Pt2, Co/Ni, Ni/Cu, Ni/Zn) , 1999 .

[51]  H. Anderson Building molecular wires from the colours of life: conjugated porphyrin oligomers , 1999 .

[52]  F. Diederich,et al.  Porphyrin‐[(E)‐1,2‐Diethynylethene] Scaffolding: Synthesis and Optical and Electrochemical Properties of Multinanometer‐Sized Porphyrin Arrays , 1998 .

[53]  R. Paolesse,et al.  Electrochemistry of metalloporphyrin homo- and hetero-dimers containing Co, Ni or Cu metal ions , 1998 .

[54]  W. Jones,et al.  Synthesis of soluble conjugated metalloporphyrin polymers with tunable electronic properties , 1998 .

[55]  J. Strachan,et al.  Effects of Orbital Ordering on Electronic Communication in Multiporphyrin Arrays , 1997 .

[56]  Milton L. Lee,et al.  Dicyanobiphenyl polysioloxane stationary phases for capillary column gas chromatography , 1997 .

[57]  A. Osuka,et al.  meso‐meso‐verknüpfte Porphyrine , 1997 .

[58]  Jonathan S. Lindsey,et al.  Effects of central metal ion (Mg, Zn) and solvent on singlet excited-state energy flow in porphyrin-based nanostructures , 1997 .

[59]  R. Wagner,et al.  Soluble Synthetic Multiporphyrin Arrays. 3. Static Spectroscopic and Electrochemical Probes of Electronic Communication , 1996 .

[60]  A. Giraudeau,et al.  ELECTROSYNTHESIS AND CHARACTERIZATION OF SYMMETRICAL AND UNSYMMETRICAL LINEAR PORPHYRIN DIMERS AND THEIR PRECURSOR MONOMERS , 1996 .

[61]  A. Osuka,et al.  Synthesis of 1,4-phenylene-bridged linear porphyrin arrays , 1996 .

[62]  N. Hush,et al.  Rigid Fused Oligoporphyrins as Potential Versatile Molecular Wires. 1. Geometry and Connectivity of 1,4,5,8-Tetraazaanthracene-Bridged Systems , 1994 .

[63]  S. Wołowiec,et al.  Cyanide Coordination to Iron(III) Porphyrins and Covalently Linked Diiron(III) Diporphyrins , 1994 .

[64]  I. Yamazaki,et al.  Geometry- and solvent-polarity-dependent photoinduced electron transfer in conformationally restricted magnesium—free-base hybrid diporphyrins , 1993 .

[65]  N. Ono,et al.  A new synthetic method for oligo(phenylenevinylenes) terminated with porphyrins , 1993 .

[66]  Kimoon Kim,et al.  Electrochemical and spectroscopic properties of dimeric cofacial porphyrins with nonelectroactive metal centers. Delocalization processes in the porphyrin .pi.-cation-radical systems , 1992 .

[67]  I. Yamazaki,et al.  Geometry dependence of intramolecular photoinduced electron transfer in synthetic zinc-ferric hybrid diporphyrins , 1990 .

[68]  Martin R. Johnson,et al.  Synthesis and characterization of quinone-substituted octaalkyl porphyrin monomers and dimers , 1990 .

[69]  M. Grzeszczuk,et al.  Spectrochemical and electrochemical studies of 21-thiatetra(p-tolyl)porphyrin and its copper(II) complexes , 1989 .

[70]  D. Sazou,et al.  Electrochemical and spectral characterization of copper, zinc, and vanadyl meso-tetrakis(1-methylpyridinium-4-yl)porphyrin complexes in dimethylformamide , 1989 .

[71]  Klaus Müllen,et al.  Hoch reduzierte Porphyrine , 1989 .

[72]  B. Simonet,et al.  Electrochemistry and spectroelectrochemistry of easily reducible and easily oxidizable iron porphyrins. Reactions of monomeric and dimeric pyrrole-substituted tetracyano and phenyl-substituted diethylamino complexes of iron tetraphenylporphyrins , 1985 .

[73]  J. Sanders,et al.  A general synthesis of mixed metal porphyrin cofacial dimers , 1985 .

[74]  J. Collman,et al.  Mixed-metal face-to-face porphyrin dimers , 1983 .

[75]  K. Kadish Electrochemical and Spectrochemical Studies of Biological Redox Components , 1982 .

[76]  M. Gouterman,et al.  Porphyrins. 40. Electronic spectra and four-orbital energies of free-base, zinc, copper, and palladium tetrakis(perfluorophenyl)porphyrins , 1980 .

[77]  H. Callot,et al.  Substituent effects in the electroreduction of porphyrins and metalloporphyrins , 1979 .

[78]  R. Felton,et al.  Polarographic Reduction of Porphyrins and Electron Spin Resonance of Porphyrin Anions1 , 1966 .

[79]  M. Kasha,et al.  The exciton model in molecular spectroscopy , 1965 .

[80]  Michael Kasha,et al.  Energy Transfer Mechanisms and the Molecular Exciton Model for Molecular Aggregates1, 2 , 1963 .

[81]  F. M. Huennekens,et al.  Spectra of the Metallo-derivatives of α,β,γ,δ-Tetraphenylporphine , 1951 .