Indentation creep vs. indentation relaxation: A matter of strain rate definition?

[1]  G. Kermouche,et al.  A new long-term indentation relaxation method to measure creep properties at the micro-scale with application to fused silica and PMMA , 2019, Mechanics of Materials.

[2]  K. Durst,et al.  A new nanoindentation creep technique using constant contact pressure , 2019, Journal of Materials Research.

[3]  D. Armstrong,et al.  Temperature dependence of strain rate sensitivity, indentation size effects and pile-up in polycrystalline tungsten from 25 to 950 °C , 2018, Materials & Design.

[4]  G. Pharr,et al.  A simple model for indentation creep , 2018 .

[5]  D. Armstrong,et al.  Development of High Temperature Nanoindentation Methodology and its Application in the Nanoindentation of Polycrystalline Tungsten in Vacuum to 950 °C , 2017 .

[6]  G. Pharr,et al.  On the Measurement of Power Law Creep Parameters from Instrumented Indentation , 2017 .

[7]  G. Pharr,et al.  Influence of modulus-to-hardness ratio and harmonic parameters on continuous stiffness measurement during nanoindentation , 2017 .

[8]  G. Kermouche,et al.  Theoretical and experimental analysis of indentation relaxation test , 2017 .

[9]  W. Oliver,et al.  A direct comparison of high temperature nanoindentation creep and uniaxial creep measurements for commercial purity aluminum , 2016 .

[10]  K. Durst,et al.  Dynamic nanoindentation testing for studying thermally activated processes from single to nanocrystalline metals , 2015 .

[11]  D. Armstrong,et al.  High temperature nanoindentation: The state of the art and future challenges , 2015 .

[12]  A. Gavrus,et al.  Formulation of a representative plastic strain and representative plastic strain rate by using a conical indentation on a rigid visco-plastic material , 2015 .

[13]  T. Clyne,et al.  A procedure for extracting primary and secondary creep parameters from nanoindentation data , 2013 .

[14]  M. Göken,et al.  An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures , 2013 .

[15]  George M. Pharr,et al.  Measurement of power-law creep parameters by instrumented indentation methods , 2013 .

[16]  H. Höppel,et al.  Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al , 2011 .

[17]  D. Stone,et al.  Analysis of indentation creep , 2010 .

[18]  G. Kermouche,et al.  Extraction of stress–strain curves of elastic–viscoplastic solids using conical/pyramidal indentation testing with application to polymers , 2008 .

[19]  D. Stone,et al.  The strain-rate sensitivity of the hardness in indentation creep , 2007 .

[20]  T. Clyne,et al.  A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature , 2006 .

[21]  L. Shen,et al.  Erratum to: “Extracting the elastic and viscoelastic properties of a polymeric film using a sharp indentation relaxation test” , 2006 .

[22]  G. Kermouche,et al.  A new index to estimate the strain rate sensitivity of glassy polymers using conical/pyramidal indentation , 2006 .

[23]  M. Sasaki,et al.  Indentation stress relaxation of sol–gel-derived organic/inorganic hybrid coating , 2005 .

[24]  G. Kermouche,et al.  An approximate solution to the problem of cone or wedge indentation of elastoplastic solids , 2005 .

[25]  Yang-Tse Cheng,et al.  Scaling, dimensional analysis, and indentation measurements , 2004 .

[26]  D. Plazek,et al.  Enthalpy recovery, creep and creep–recovery measurements during physical aging of amorphous selenium , 2003 .

[27]  E. Felder,et al.  Identification of the viscoplastic behavior of a polycarbonate based on experiments and numerical modeling of the nano-indentation test , 2002 .

[28]  Subra Suresh,et al.  Computational modeling of the forward and reverse problems in instrumented sharp indentation , 2001 .

[29]  J. Pethica,et al.  Nanoindentation creep of single-crystal tungsten and gallium arsenide , 1997 .

[30]  B. D. Fabes,et al.  The relationship between indentation and uniaxial creep in amorphous selenium , 1995 .

[31]  Boehmer,et al.  Elastic and viscoelastic properties of amorphous selenium and identification of the phase transition between ring and chain structures. , 1993, Physical review. B, Condensed matter.

[32]  A. F. Bower,et al.  Indentation of a power law creeping solid , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[33]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[34]  K. Johnson,et al.  The correlation of indentation experiments , 1970 .

[35]  I. N. Sneddon,et al.  Boussinesq's problem for a rigid cone , 1948, Mathematical Proceedings of the Cambridge Philosophical Society.

[36]  B. Beake,et al.  Nanomechanics to 1000 °C for high temperature mechanical properties of bulk materials and hard coatings , 2019, Vacuum.

[37]  G. Kermouche,et al.  Cone indentation of time-dependent materials : The effects of the indentation strain rate , 2007 .

[38]  G. Pharr,et al.  Time dependent deformation during indentation testing , 1996 .

[39]  J. Loubet,et al.  Nanoindentation with a Surface Force Apparatus , 1993 .

[40]  J. Pethica,et al.  Tip Surface Interactions in STM and AFM , 1987 .

[41]  David Tabor,et al.  The hardness of solids , 1970 .