Mechanically Interlocked Molecules (MIMs)-Molecular Shuttles, Switches, and Machines (Nobel Lecture).

Chemistry welcomes a new bond: The mechanical bond has endowed molecules with component parts whose movements can be controlled and monitored. In his Nobel Lecture, J. F. Stoddart describes how being able to template the formation of mechanically interlocked molecules has led to the design and synthesis of shuttles, switches, and machines at the nanoscale.

[1]  J. F. Stoddart,et al.  Mastering the non-equilibrium assembly and operation of molecular machines. , 2017, Chemical Society reviews.

[2]  Jean-Pierre Sauvage,et al.  From Chemical Topology to Molecular Machines (Nobel Lecture). , 2017, Angewandte Chemie.

[3]  Ben L Feringa,et al.  The Art of Building Small: From Molecular Switches to Motors (Nobel Lecture). , 2017, Angewandte Chemie.

[4]  Anouk S. Lubbe,et al.  Designing dynamic functional molecular systems , 2017 .

[5]  Michael T. Otley,et al.  An efficient artificial molecular pump , 2017 .

[6]  David A Leigh,et al.  Artificial molecular motors. , 2017, Chemical Society reviews.

[7]  J. Fraser Stoddart,et al.  The Nature of the Mechanical Bond: From Molecules to Machines , 2016 .

[8]  Peyman Z. Moghadam,et al.  A Redox-Active Bistable Molecular Switch Mounted inside a Metal-Organic Framework. , 2016, Journal of the American Chemical Society.

[9]  Chuyang Cheng,et al.  Wholly Synthetic Molecular Machines. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[10]  J. Rebek Hydrogen-bonded Capsules: Molecular Behavior in Small Spaces , 2015 .

[11]  J. Weissman,et al.  Ribosome profiling reveals the what, when, where and how of protein synthesis , 2015, Nature Reviews Molecular Cell Biology.

[12]  Sundus Erbas-Cakmak,et al.  Artificial Molecular Machines , 2015, Chemical reviews.

[13]  Euan R. Kay,et al.  Die Evolution molekularer Maschinen , 2015 .

[14]  J. F. Stoddart,et al.  Design and Synthesis of Nonequilibrium Systems. , 2015, ACS nano.

[15]  Paul S Weiss,et al.  Controlling Motion at the Nanoscale: Rise of the Molecular Machines. , 2015, ACS nano.

[16]  Euan R Kay,et al.  Rise of the Molecular Machines , 2015, Angewandte Chemie.

[17]  Hao Li,et al.  An artificial molecular pump. , 2015, Nature nanotechnology.

[18]  J. F. Stoddart Mechanisch verzahnte Moleküle (MIMs) für die Welt von morgen , 2014 .

[19]  J. F. Stoddart,et al.  Putting mechanically interlocked molecules (MIMs) to work in tomorrow's world. , 2014, Angewandte Chemie.

[20]  Nicolaas A. Vermeulen,et al.  Energetically demanding transport in a supramolecular assembly. , 2014, Journal of the American Chemical Society.

[21]  Jean-Marie Lehn,et al.  Supramolecular Chemistry: Concepts And Perspectives , 2014 .

[22]  Ryan M. Young,et al.  Relative unidirectional translation in an artificial molecular assembly fueled by light. , 2013, Journal of the American Chemical Society.

[23]  G. Schill Catenanes, Rotaxanes, and Knots , 2013 .

[24]  J. C. Barnes,et al.  A Radically Configurable Six-State Compound , 2013, Science.

[25]  R. Astumian Microscopic reversibility as the organizing principle of molecular machines. , 2012, Nature nanotechnology.

[26]  William R. Dichtel,et al.  High hopes: can molecular electronics realise its potential? , 2012, Chemical Society reviews.

[27]  Zongxi Li,et al.  Mesoporous silica nanoparticles in biomedical applications. , 2012, Chemical Society reviews.

[28]  M. Garcia‐Garibay,et al.  Crystalline molecular machines: function, phase order, dimensionality, and composition. , 2012, Chemical Society reviews.

[29]  J. F. Stoddart,et al.  Great expectations: can artificial molecular machines deliver on their promise? , 2012, Chemical Society reviews.

[30]  John A. Hammer,et al.  Walking to work: roles for class V myosins as cargo transporters , 2011, Nature Reviews Molecular Cell Biology.

[31]  J. F. Stoddart,et al.  Mechanical bond formation by radical templation. , 2010, Angewandte Chemie.

[32]  Thomas A. Steitz Von der Struktur und Funktion des Ribosoms zu neuen Antibiotika (Nobel‐Aufsatz) , 2010 .

[33]  Ada Yonath Winterschlafende Bären, Antibiotika und die Evolution des Ribosoms (Nobel‐Aufsatz) , 2010 .

[34]  Venki Ramakrishnan Die Aufklärung der Ribosomenstruktur (Nobel‐Aufsatz) , 2010 .

[35]  Thomas A Steitz,et al.  From the structure and function of the ribosome to new antibiotics (Nobel Lecture). , 2010, Angewandte Chemie.

[36]  A. Yonath Polar bears, antibiotics, and the evolving ribosome (Nobel Lecture). , 2010, Angewandte Chemie.

[37]  V. Ramakrishnan,et al.  Unraveling the structure of the ribosome (Nobel Lecture). , 2010, Angewandte Chemie.

[38]  Douglas C. Friedman,et al.  Radically enhanced molecular recognition. , 2010, Nature chemistry.

[39]  Josef Michl,et al.  Molecular rotors and motors: recent advances and future challenges. , 2009, ACS nano.

[40]  J. Fraser Stoddart,et al.  Big and little Meccano , 2008 .

[41]  A. Credi,et al.  Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld , 2008 .

[42]  M. Nascimento,et al.  The nature of the chemical bond , 2008 .

[43]  R. Astumian Design principles for Brownian molecular machines: how to swim in molasses and walk in a hurricane. , 2007, Physical chemistry chemical physics : PCCP.

[44]  Ben L Feringa,et al.  The art of building small: from molecular switches to molecular motors. , 2007, The Journal of organic chemistry.

[45]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[46]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[47]  Euan R. Kay,et al.  Synthetische molekulare Motoren und mechanische Maschinen , 2007 .

[48]  T R Kelly,et al.  Progress toward a rationally designed molecular motor. , 2001, Accounts of chemical research.

[49]  J. Fraser Stoddart,et al.  Künstliche molekulare Maschinen , 2000 .

[50]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[51]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[52]  Masahiro Higuchi,et al.  Current/Voltage Characteristics of Monolayers of Redox‐Switchable [2]Catenanes on Gold , 2000 .

[53]  John E Walker,et al.  ATP Synthesis by Rotary Catalysis (Nobel lecture). , 1998, Angewandte Chemie.

[54]  P. Boyer,et al.  Energy, Life, and ATP (Nobel Lecture). , 1998, Angewandte Chemie.

[55]  P. Boyer Energie, Leben und ATP (Nobel-Vortrag) , 1998 .

[56]  John E. Walker,et al.  ATP‐Synthese durch Rotations‐Katalyse (Nobel‐Vortrag) , 1998 .

[57]  Jean-Pierre Sauvage,et al.  Transition Metal-Containing Rotaxanes and Catenanes in Motion: Toward Molecular Machines and Motors , 1998 .

[58]  Vincenzo Balzani,et al.  A Chemically and Electrochemically Switchable [2]Catenane Incorporating a Tetrathiafulvalene Unit. , 1998, Angewandte Chemie.

[59]  David J. Williams,et al.  Ein chemisch und elektrochemisch schaltbares [2]Catenan mit Tetrathiafulvalen‐Einheit , 1998 .

[60]  David J. Williams,et al.  The Five‐Stage Self‐Assembly of a Branched Heptacatenane , 1997 .

[61]  J. Fraser Stoddart,et al.  SYNTHETIC SUPRAMOLECULAR CHEMISTRY , 1997 .

[62]  David J. Williams,et al.  Selbstorganisation eines verzweigten Heptacatenans in fünf Stufen , 1997 .

[63]  R. Astumian Thermodynamics and kinetics of a Brownian motor. , 1997, Science.

[64]  Bier,et al.  Fluctuation driven ratchets: Molecular motors. , 1994, Physical review letters.

[65]  D. Cram,et al.  Container Molecules And Their Guests , 1994 .

[66]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[67]  David J. Williams,et al.  Molecular meccano. 1. [2]Rotaxanes and a [2]catenane made to order , 1992 .

[68]  J Fraser Stoddart,et al.  A molecular shuttle. , 1991, Journal of the American Chemical Society.

[69]  David J. Williams,et al.  A [2] Catenane Made to Order , 1989 .

[70]  David J. Williams,et al.  Ein [2]‐Catenan auf Bestellung , 1989 .

[71]  David J. Williams,et al.  Cyclobis(paraquat‐p‐phenylene). A Tetracationic Multipurpose Receptor , 1988 .

[72]  David J. Williams,et al.  Isostrukturelle Rezeptorstapel mit alternierenden Ladungen; die Einschlußverbindungen von Hydrochinon- und Brenzcatechin-dimethylethern mit Cyclobis(paraquat-p-phenylen)† , 1988 .

[73]  David J. Williams,et al.  Cyclobis(paraquat‐p‐phenylen), ein tetrakationischer Mehrzweckrezeptor , 1988 .

[74]  David J. Williams,et al.  Isostructural, Alternately‐Charged Receptor Stacks. The Inclusion Complexes of Hydroquinone and Catechol Dimethyl Ethers with Cyclobis(paraquat‐p‐phenylene) , 1988 .

[75]  Donald J. Cram,et al.  Von molekularen Wirten und Gästen sowie ihren Komplexen: Nobel-Vortrag , 1988 .

[76]  D. Cram,et al.  The design of molecular hosts, guests, and their complexes , 1988, Science.

[77]  J. Lehn,et al.  Supramolekulare Chemie – Moleküle, Übermoleküle und molekulare Funktionseinheiten (Nobel-Vortrag)† , 1988 .

[78]  Jean-Marie Lehn,et al.  Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture) , 1988 .

[79]  David J. Williams,et al.  Koordination in zweiter Sphäre — eine neuartige Rolle für Rezeptormoleküle , 1986 .

[80]  David J. Williams,et al.  Second‐Sphere Coordination–a Novel Rǒle for Molecular Receptors , 1986 .

[81]  David J. Williams,et al.  Complex formation between dibenzo-3n-crown-n ethers and the diquat dication , 1983 .

[82]  Jean-Pierre Sauvage,et al.  Une nouvelle famille de molecules : les metallo-catenanes , 1983 .

[83]  David J. Williams,et al.  Second Sphere Coordination of Cationic Platinum Complexes by Crown Ethers— The X‐Ray Crystal Structure of [Pt(bpy)(NH3)2. Dibenzo[30]crown‐10]2+[PF6] 2−xH2O (x≈0.6) , 1981 .

[84]  David J. Williams,et al.  Koordination kationischer Platinkomplexe in der zweiten Sphäre durch Kronenether: Struktur von [Pt(bpy)(NH3)2·Dibenzo‐[30]krone‐10]2+[PF6−]2·xH2O (x ≈︂ 0.6) , 1981 .

[85]  I. Harrison The effect of ring size on threading reactions of macrocycles , 1972 .

[86]  Gottfried Schill,et al.  The Preparation of Catena Compounds by Directed Synthesis , 1964 .

[87]  Gottfried Schill,et al.  Gezielte Synthese von Catena‐Verbindungen [1] , 1964 .

[88]  E. Wasserman,et al.  THE PREPARATION OF INTERLOCKING RINGS: A CATENANE1 , 1960 .

[89]  Linus Pauling,et al.  The Nature of the Chemical Bond and the Structure of Molecules and Crystals , 1941, Nature.

[90]  H. Mark,et al.  Zur Struktur der Polysiloxene. I , 1953 .