Mechanically Interlocked Molecules (MIMs)-Molecular Shuttles, Switches, and Machines (Nobel Lecture).
暂无分享,去创建一个
[1] J. F. Stoddart,et al. Mastering the non-equilibrium assembly and operation of molecular machines. , 2017, Chemical Society reviews.
[2] Jean-Pierre Sauvage,et al. From Chemical Topology to Molecular Machines (Nobel Lecture). , 2017, Angewandte Chemie.
[3] Ben L Feringa,et al. The Art of Building Small: From Molecular Switches to Motors (Nobel Lecture). , 2017, Angewandte Chemie.
[4] Anouk S. Lubbe,et al. Designing dynamic functional molecular systems , 2017 .
[5] Michael T. Otley,et al. An efficient artificial molecular pump , 2017 .
[6] David A Leigh,et al. Artificial molecular motors. , 2017, Chemical Society reviews.
[7] J. Fraser Stoddart,et al. The Nature of the Mechanical Bond: From Molecules to Machines , 2016 .
[8] Peyman Z. Moghadam,et al. A Redox-Active Bistable Molecular Switch Mounted inside a Metal-Organic Framework. , 2016, Journal of the American Chemical Society.
[9] Chuyang Cheng,et al. Wholly Synthetic Molecular Machines. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.
[10] J. Rebek. Hydrogen-bonded Capsules: Molecular Behavior in Small Spaces , 2015 .
[11] J. Weissman,et al. Ribosome profiling reveals the what, when, where and how of protein synthesis , 2015, Nature Reviews Molecular Cell Biology.
[12] Sundus Erbas-Cakmak,et al. Artificial Molecular Machines , 2015, Chemical reviews.
[13] Euan R. Kay,et al. Die Evolution molekularer Maschinen , 2015 .
[14] J. F. Stoddart,et al. Design and Synthesis of Nonequilibrium Systems. , 2015, ACS nano.
[15] Paul S Weiss,et al. Controlling Motion at the Nanoscale: Rise of the Molecular Machines. , 2015, ACS nano.
[16] Euan R Kay,et al. Rise of the Molecular Machines , 2015, Angewandte Chemie.
[17] Hao Li,et al. An artificial molecular pump. , 2015, Nature nanotechnology.
[18] J. F. Stoddart. Mechanisch verzahnte Moleküle (MIMs) für die Welt von morgen , 2014 .
[19] J. F. Stoddart,et al. Putting mechanically interlocked molecules (MIMs) to work in tomorrow's world. , 2014, Angewandte Chemie.
[20] Nicolaas A. Vermeulen,et al. Energetically demanding transport in a supramolecular assembly. , 2014, Journal of the American Chemical Society.
[21] Jean-Marie Lehn,et al. Supramolecular Chemistry: Concepts And Perspectives , 2014 .
[22] Ryan M. Young,et al. Relative unidirectional translation in an artificial molecular assembly fueled by light. , 2013, Journal of the American Chemical Society.
[23] G. Schill. Catenanes, Rotaxanes, and Knots , 2013 .
[24] J. C. Barnes,et al. A Radically Configurable Six-State Compound , 2013, Science.
[25] R. Astumian. Microscopic reversibility as the organizing principle of molecular machines. , 2012, Nature nanotechnology.
[26] William R. Dichtel,et al. High hopes: can molecular electronics realise its potential? , 2012, Chemical Society reviews.
[27] Zongxi Li,et al. Mesoporous silica nanoparticles in biomedical applications. , 2012, Chemical Society reviews.
[28] M. Garcia‐Garibay,et al. Crystalline molecular machines: function, phase order, dimensionality, and composition. , 2012, Chemical Society reviews.
[29] J. F. Stoddart,et al. Great expectations: can artificial molecular machines deliver on their promise? , 2012, Chemical Society reviews.
[30] John A. Hammer,et al. Walking to work: roles for class V myosins as cargo transporters , 2011, Nature Reviews Molecular Cell Biology.
[31] J. F. Stoddart,et al. Mechanical bond formation by radical templation. , 2010, Angewandte Chemie.
[32] Thomas A. Steitz. Von der Struktur und Funktion des Ribosoms zu neuen Antibiotika (Nobel‐Aufsatz) , 2010 .
[33] Ada Yonath. Winterschlafende Bären, Antibiotika und die Evolution des Ribosoms (Nobel‐Aufsatz) , 2010 .
[34] Venki Ramakrishnan. Die Aufklärung der Ribosomenstruktur (Nobel‐Aufsatz) , 2010 .
[35] Thomas A Steitz,et al. From the structure and function of the ribosome to new antibiotics (Nobel Lecture). , 2010, Angewandte Chemie.
[36] A. Yonath. Polar bears, antibiotics, and the evolving ribosome (Nobel Lecture). , 2010, Angewandte Chemie.
[37] V. Ramakrishnan,et al. Unraveling the structure of the ribosome (Nobel Lecture). , 2010, Angewandte Chemie.
[38] Douglas C. Friedman,et al. Radically enhanced molecular recognition. , 2010, Nature chemistry.
[39] Josef Michl,et al. Molecular rotors and motors: recent advances and future challenges. , 2009, ACS nano.
[40] J. Fraser Stoddart,et al. Big and little Meccano , 2008 .
[41] A. Credi,et al. Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld , 2008 .
[42] M. Nascimento,et al. The nature of the chemical bond , 2008 .
[43] R. Astumian. Design principles for Brownian molecular machines: how to swim in molasses and walk in a hurricane. , 2007, Physical chemistry chemical physics : PCCP.
[44] Ben L Feringa,et al. The art of building small: from molecular switches to molecular motors. , 2007, The Journal of organic chemistry.
[45] Francesco Zerbetto,et al. Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.
[46] Bonnie A. Sheriff,et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.
[47] Euan R. Kay,et al. Synthetische molekulare Motoren und mechanische Maschinen , 2007 .
[48] T R Kelly,et al. Progress toward a rationally designed molecular motor. , 2001, Accounts of chemical research.
[49] J. Fraser Stoddart,et al. Künstliche molekulare Maschinen , 2000 .
[50] Stoddart,et al. Artificial Molecular Machines. , 2000, Angewandte Chemie.
[51] J. F. Stoddart,et al. A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .
[52] Masahiro Higuchi,et al. Current/Voltage Characteristics of Monolayers of Redox‐Switchable [2]Catenanes on Gold , 2000 .
[53] John E Walker,et al. ATP Synthesis by Rotary Catalysis (Nobel lecture). , 1998, Angewandte Chemie.
[54] P. Boyer,et al. Energy, Life, and ATP (Nobel Lecture). , 1998, Angewandte Chemie.
[55] P. Boyer. Energie, Leben und ATP (Nobel-Vortrag) , 1998 .
[56] John E. Walker,et al. ATP‐Synthese durch Rotations‐Katalyse (Nobel‐Vortrag) , 1998 .
[57] Jean-Pierre Sauvage,et al. Transition Metal-Containing Rotaxanes and Catenanes in Motion: Toward Molecular Machines and Motors , 1998 .
[58] Vincenzo Balzani,et al. A Chemically and Electrochemically Switchable [2]Catenane Incorporating a Tetrathiafulvalene Unit. , 1998, Angewandte Chemie.
[59] David J. Williams,et al. Ein chemisch und elektrochemisch schaltbares [2]Catenan mit Tetrathiafulvalen‐Einheit , 1998 .
[60] David J. Williams,et al. The Five‐Stage Self‐Assembly of a Branched Heptacatenane , 1997 .
[61] J. Fraser Stoddart,et al. SYNTHETIC SUPRAMOLECULAR CHEMISTRY , 1997 .
[62] David J. Williams,et al. Selbstorganisation eines verzweigten Heptacatenans in fünf Stufen , 1997 .
[63] R. Astumian. Thermodynamics and kinetics of a Brownian motor. , 1997, Science.
[64] Bier,et al. Fluctuation driven ratchets: Molecular motors. , 1994, Physical review letters.
[65] D. Cram,et al. Container Molecules And Their Guests , 1994 .
[66] J. F. Stoddart,et al. A chemically and electrochemically switchable molecular shuttle , 1994, Nature.
[67] David J. Williams,et al. Molecular meccano. 1. [2]Rotaxanes and a [2]catenane made to order , 1992 .
[68] J Fraser Stoddart,et al. A molecular shuttle. , 1991, Journal of the American Chemical Society.
[69] David J. Williams,et al. A [2] Catenane Made to Order , 1989 .
[70] David J. Williams,et al. Ein [2]‐Catenan auf Bestellung , 1989 .
[71] David J. Williams,et al. Cyclobis(paraquat‐p‐phenylene). A Tetracationic Multipurpose Receptor , 1988 .
[72] David J. Williams,et al. Isostrukturelle Rezeptorstapel mit alternierenden Ladungen; die Einschlußverbindungen von Hydrochinon- und Brenzcatechin-dimethylethern mit Cyclobis(paraquat-p-phenylen)† , 1988 .
[73] David J. Williams,et al. Cyclobis(paraquat‐p‐phenylen), ein tetrakationischer Mehrzweckrezeptor , 1988 .
[74] David J. Williams,et al. Isostructural, Alternately‐Charged Receptor Stacks. The Inclusion Complexes of Hydroquinone and Catechol Dimethyl Ethers with Cyclobis(paraquat‐p‐phenylene) , 1988 .
[75] Donald J. Cram,et al. Von molekularen Wirten und Gästen sowie ihren Komplexen: Nobel-Vortrag , 1988 .
[76] D. Cram,et al. The design of molecular hosts, guests, and their complexes , 1988, Science.
[77] J. Lehn,et al. Supramolekulare Chemie – Moleküle, Übermoleküle und molekulare Funktionseinheiten (Nobel-Vortrag)† , 1988 .
[78] Jean-Marie Lehn,et al. Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture) , 1988 .
[79] David J. Williams,et al. Koordination in zweiter Sphäre — eine neuartige Rolle für Rezeptormoleküle , 1986 .
[80] David J. Williams,et al. Second‐Sphere Coordination–a Novel Rǒle for Molecular Receptors , 1986 .
[81] David J. Williams,et al. Complex formation between dibenzo-3n-crown-n ethers and the diquat dication , 1983 .
[82] Jean-Pierre Sauvage,et al. Une nouvelle famille de molecules : les metallo-catenanes , 1983 .
[83] David J. Williams,et al. Second Sphere Coordination of Cationic Platinum Complexes by Crown Ethers— The X‐Ray Crystal Structure of [Pt(bpy)(NH3)2. Dibenzo[30]crown‐10]2+[PF6] 2−xH2O (x≈0.6) , 1981 .
[84] David J. Williams,et al. Koordination kationischer Platinkomplexe in der zweiten Sphäre durch Kronenether: Struktur von [Pt(bpy)(NH3)2·Dibenzo‐[30]krone‐10]2+[PF6−]2·xH2O (x ≈︂ 0.6) , 1981 .
[85] I. Harrison. The effect of ring size on threading reactions of macrocycles , 1972 .
[86] Gottfried Schill,et al. The Preparation of Catena Compounds by Directed Synthesis , 1964 .
[87] Gottfried Schill,et al. Gezielte Synthese von Catena‐Verbindungen [1] , 1964 .
[88] E. Wasserman,et al. THE PREPARATION OF INTERLOCKING RINGS: A CATENANE1 , 1960 .
[89] Linus Pauling,et al. The Nature of the Chemical Bond and the Structure of Molecules and Crystals , 1941, Nature.
[90] H. Mark,et al. Zur Struktur der Polysiloxene. I , 1953 .