Large-scale sequencing and the new animal phylogeny.

[1]  H. Philippe,et al.  Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model , 2007, BMC Evolutionary Biology.

[2]  M. Sanderson,et al.  Inferring angiosperm phylogeny from EST data with widespread gene duplication , 2007, BMC Evolutionary Biology.

[3]  H. Philippe,et al.  SCaFoS: a tool for Selection, Concatenation and Fusion of Sequences for phylogenomics , 2007, BMC Evolutionary Biology.

[4]  H. Philippe,et al.  Assessing site-interdependent phylogenetic models of sequence evolution. , 2006, Molecular biology and evolution.

[5]  F. Delsuc,et al.  Tunicates and not cephalochordates are the closest living relatives of vertebrates , 2006, Nature.

[6]  N. M. Brooke,et al.  An unusual choanoflagellate protein released by Hedgehog autocatalytic processing , 2006, Proceedings of the Royal Society B: Biological Sciences.

[7]  Alfried P Vogler,et al.  Dense taxonomic EST sampling and its applications for molecular systematics of the Coleoptera (beetles). , 2006, Molecular biology and evolution.

[8]  David J. Miller,et al.  Maintenance of ancestral complexity and non-metazoan genes in two basal cnidarians. , 2005, Trends in genetics : TIG.

[9]  Hervé Philippe,et al.  An empirical assessment of long-branch attraction artefacts in deep eukaryotic phylogenomics. , 2005, Systematic biology.

[10]  J. Wiens Can incomplete taxa rescue phylogenetic analyses from long-branch attraction? , 2005, Systematic biology.

[11]  Makedonka Mitreva,et al.  Comparative genomics of nematodes. , 2005, Trends in genetics : TIG.

[12]  Naiara Rodríguez-Ezpeleta,et al.  Monophyly of Primary Photosynthetic Eukaryotes: Green Plants, Red Algae, and Glaucophytes , 2005, Current Biology.

[13]  Nicola J Patron,et al.  A Transcriptional Fusion of Genes Encoding Glyceraldehyde‐3‐Phosphate Dehydrogenase (GAPDH) and Enolase in Dinoflagellates , 2005, The Journal of eukaryotic microbiology.

[14]  H. Philippe,et al.  Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. , 2005, Molecular biology and evolution.

[15]  J. McInerney,et al.  The Opisthokonta and the Ecdysozoa may not be clades: stronger support for the grouping of plant and animal than for animal and fungi and stronger support for the Coelomata than Ecdysozoa. , 2005, Molecular biology and evolution.

[16]  F. Delsuc,et al.  Phylogenomics and the reconstruction of the tree of life , 2005, Nature Reviews Genetics.

[17]  J. Dopazo,et al.  Genome-scale evidence of the nematode-arthropod clade , 2005, Genome Biology.

[18]  Vivek Gowri-Shankar,et al.  Consideration of RNA secondary structure significantly improves likelihood-based estimates of phylogeny: examples from the bilateria. , 2005, Molecular biology and evolution.

[19]  W. Gilbert,et al.  Resolution of a deep animal divergence by the pattern of intron conservation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Prachi Shah,et al.  Evolutionary sequence analysis of complete eukaryote genomes , 2005, BMC Bioinformatics.

[21]  Neil Hall,et al.  A transcriptomic analysis of the phylum Nematoda , 2004, Nature Genetics.

[22]  Marta Riutort,et al.  Mitochondrial genome data support the basal position of Acoelomorpha and the polyphyly of the Platyhelminthes. , 2004, Molecular phylogenetics and evolution.

[23]  Bryan Kolaczkowski,et al.  Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous , 2004, Nature.

[24]  P. Holland,et al.  Phylogenomics of eukaryotes: impact of missing data on large alignments. , 2004, Molecular biology and evolution.

[25]  J. G. Burleigh,et al.  Phylogenetic signal in nucleotide data from seed plants: implications for resolving the seed plant tree of life. , 2004, American journal of botany.

[26]  S. Ho,et al.  Tracing the decay of the historical signal in biological sequence data. , 2004, Systematic biology.

[27]  H. Philippe,et al.  A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. , 2004, Molecular biology and evolution.

[28]  Emily C. Moriarty,et al.  The importance of proper model assumption in bayesian phylogenetics. , 2004, Systematic biology.

[29]  R. Saint,et al.  EST Analysis of the Cnidarian Acropora millepora Reveals Extensive Gene Loss and Rapid Sequence Divergence in the Model Invertebrates , 2003, Current Biology.

[30]  E. Koonin,et al.  Coelomata and not Ecdysozoa: evidence from genome-wide phylogenetic analysis. , 2003, Genome research.

[31]  J. Wiens,et al.  Missing data, incomplete taxa, and phylogenetic accuracy. , 2003, Systematic biology.

[32]  S. Carroll,et al.  Conflicting phylogenetic signals at the base of the metazoan tree , 2003, Evolution & development.

[33]  S. Rudd Expressed sequence tags: alternative or complement to whole genome sequences? , 2003, Trends in plant science.

[34]  M. Manuel,et al.  Phylogeny and evolution of calcareous sponges: monophyly of calcinea and calcaronea, high level of morphological homoplasy, and the primitive nature of axial symmetry. , 2003, Systematic biology.

[35]  Derrick J. Zwickl,et al.  Is sparse taxon sampling a problem for phylogenetic inference? , 2003, Systematic biology.

[36]  E. Zimmer,et al.  Deciding among green plants for whole genome studies. , 2002, Trends in plant science.

[37]  H. Shaffer,et al.  Troubleshooting Molecular Phylogenetic Analyses , 2002 .

[38]  I. Ruiz-Trillo,et al.  A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  T. Cavalier-smith,et al.  Analyses of RNA Polymerase II genes from free-living protists: phylogeny, long branch attraction, and the eukaryotic big bang. , 2002, Molecular biology and evolution.

[40]  T. Gojobori,et al.  Bmc Evolutionary Biology the Evolutionary Position of Nematodes , 2022 .

[41]  Terry Gaasterland,et al.  The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[42]  S. Carroll,et al.  A receptor tyrosine kinase from choanoflagellates: Molecular insights into early animal evolution , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[43]  D. Horner,et al.  Chaperonin 60 phylogeny provides further evidence for secondary loss of mitochondria among putative early-branching eukaryotes. , 2001, Molecular biology and evolution.

[44]  G. Bicker,et al.  A tissue-specific marker of Ecdysozoa , 2001, Development Genes and Evolution.

[45]  S. O’Brien,et al.  On Choosing Mammalian Genomes for Sequencing , 2001, Science.

[46]  K. Peterson,et al.  Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences , 2001, Evolution & development.

[47]  N. Lartillot,et al.  The new animal phylogeny: reliability and implications. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Sean B. Carroll,et al.  Hox genes in brachiopods and priapulids and protostome evolution , 1999, Nature.

[49]  H. Philippe,et al.  Archaea sister group of Bacteria? Indications from tree reconstruction artifacts in ancient phylogenies. , 1999, Molecular biology and evolution.

[50]  P. Lio’,et al.  Models of molecular evolution and phylogeny. , 1998, Genome research.

[51]  R. Raff,et al.  Evidence for a clade of nematodes, arthropods and other moulting animals , 1997, Nature.

[52]  D Penny,et al.  Evolution of chlorophyll and bacteriochlorophyll: the problem of invariant sites in sequence analysis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[53]  M. Benton,et al.  Missing data and rhynchosaur phylogeny , 1995 .

[54]  J. Lake,et al.  Evidence from 18S ribosomal DNA that the lophophorates are protostome animals , 1995, Science.

[55]  M. Novacek Fossils, Topologies, Missing Data, and the Higher Level Phylogeny of Eutherian Mammals , 1992 .

[56]  P. Lockhart,et al.  Substitutional bias confounds inference of cyanelle origins from sequence data , 1992, Journal of Molecular Evolution.

[57]  John P. Huelsenbeck,et al.  WHEN ARE FOSSILS BETTER THAN EXTANT TAXA IN PHYLOGENETIC ANALYSIS , 1991 .

[58]  Michael D. Hendy,et al.  A Framework for the Quantitative Study of Evolutionary Trees , 1989 .

[59]  R. Raff,et al.  Molecular phylogeny of the animal kingdom. , 1988, Science.

[60]  G. Moore,et al.  Fitting the gene lineage into its species lineage , 1979 .

[61]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[62]  G. Gilbert,et al.  THE NEW VIEW OF ANIMAL PHYLOGENY , 2005 .

[63]  Joaquín Dopazo,et al.  Phylogenomics and the number of characters required for obtaining an accurate phylogeny of eukaryote model species , 2004, ISMB/ECCB.

[64]  J. Ohn,et al.  Does Adding Characters with Missing Data Increase or Decrease Phylogenetic Accuracy ? , 2003 .

[65]  S. O’Brien,et al.  Genomics. On choosing mammalian genomes for sequencing. , 2001, Science.

[66]  B. Hausdorf Early evolution of the bilateria. , 2000, Systematic biology.

[67]  Anne Chenuil,et al.  Can the Cambrian explosion be inferred through molecular phylogeny , 1994 .

[68]  G. Olsen,et al.  Earliest phylogenetic branchings: comparing rRNA-based evolutionary trees inferred with various techniques. , 1987, Cold Spring Harbor symposia on quantitative biology.

[69]  Ernst Haeckel Generelle morphologie der organismen. Allgemeine grundzüge der organischen formen-wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte descendenztheorie, von Ernst Haeckel , 1866 .