The rotational dimension of a graph

Given a connected graph G = (N, E) with node weights s∈ℝ **image** and nonnegative edge lengths, we study the following embedding problem related to an eigenvalue optimization problem over the second smallest eigenvalue of the (scaled) Laplacian of G: Find vi∈ℝ|N|, i∈N so that distances between adjacent nodes do not exceed prescribed edge lengths, the weighted barycenter of all points is at the origin, and **image** is maximized. In the case of a two-dimensional optimal solution this corresponds to the equilibrium position of a quickly rotating net consisting of weighted mass points that are linked by massless cables of given lengths. We define the rotational dimension of G to be the minimal dimension k so that for all choices of lengths and weights an optimal solution can be found in ℝk and show that this is a minor monotone graph parameter. We give forbidden minor characterizations up to rotational dimension 2 and prove that the rotational dimension is always bounded above by the tree-width of G plus one. © 2010 Wiley Periodicals, Inc. J Graph Theory 66:283-302, 2011 © 2011 Wiley Periodicals, Inc.

[1]  Hein Holst,et al.  Two Tree-Width-Like Graph Invariants , 2003, Comb..

[2]  Frank Harary,et al.  Graph Theory , 2016 .

[3]  B. Mohar THE LAPLACIAN SPECTRUM OF GRAPHS y , 1991 .

[4]  D. Cvetkovic,et al.  Spectra of Graphs: Theory and Applications , 1997 .

[5]  Yves Colin de Verdière,et al.  Multiplicities of Eigenvalues and Tree-Width of Graphs , 1998, J. Comb. Theory B.

[6]  Peter F. Stadler,et al.  Laplacian Eigenvectors of Graphs , 2007 .

[7]  M. Fiedler Laplacian of graphs and algebraic connectivity , 1989 .

[8]  Miroslav Fiedler,et al.  Absolute algebraic connectivity of trees , 1990 .

[9]  Michael Doob,et al.  Spectra of graphs , 1980 .

[10]  Stephen P. Boyd,et al.  The Fastest Mixing Markov Process on a Graph and a Connection to a Maximum Variance Unfolding Problem , 2006, SIAM Rev..

[11]  Robert Connelly,et al.  Realizability of Graphs , 2007, Discret. Comput. Geom..

[12]  L. Lovász,et al.  The Colin de Verdière graph parameter , 1999 .

[13]  D. Cvetkovic,et al.  Spectra of graphs : theory and application , 1995 .

[14]  Robert Connelly,et al.  Generic Global Rigidity , 2005, Discret. Comput. Geom..

[15]  Willem H. Haemers,et al.  Spectra of Graphs , 2011 .

[16]  Alexander Schrijver,et al.  The Colin De Verdi Ere Graph Parameter , 1997 .

[17]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[18]  Christoph Helmberg,et al.  Embedded in the Shadow of the Separator , 2008, SIAM J. Optim..

[19]  Michael William Newman,et al.  The Laplacian spectrum of graphs , 2001 .