Determining the distance to monotonicity of a biological network: a graph-theoretical approach.

The authors use ideas from graph theory in order to determine how distant is a given biological network from being monotone. On the signed graph representing the system, the minimal number of sign inconsistencies (i.e. the distance to monotonicity) is shown to be equal to the minimal number of fundamental cycles having a negative sign. Suitable operations aiming at computing such a number are also proposed and shown to outperform all algorithms that are so far existing for this task. [Includes supplementary material].

[1]  Thomas Zaslavsky Signed graphs , 1982, Discret. Appl. Math..

[2]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[3]  H. Kitano,et al.  A comprehensive pathway map of epidermal growth factor receptor signaling , 2005, Molecular systems biology.

[4]  Yukiko Matsuoka,et al.  Molecular Interaction Map of a Macrophage , 2004 .

[5]  R. Prim Shortest connection networks and some generalizations , 1957 .

[6]  M. Hirsch,et al.  4. Monotone Dynamical Systems , 2005 .

[7]  Thomas Zaslavsky Signed graphs: To: T. Zaslausky, Discrete Appl. Math 4 (1982) 47-74 , 1983, Discret. Appl. Math..

[8]  M. Hirsch,et al.  Chapter 4 Monotone Dynamical Systems , 2006 .

[9]  Rolf Niedermeier,et al.  Separator-based data reduction for signed graph balancing , 2010, J. Comb. Optim..

[10]  Gregory Gutin,et al.  When the greedy algorithm fails , 2004, Discret. Optim..

[11]  N.R. Malik,et al.  Graph theory with applications to engineering and computer science , 1975, Proceedings of the IEEE.

[12]  Julio Collado-Vides,et al.  RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions , 2005, Nucleic Acids Res..

[13]  Thomas Zaslavsky,et al.  A Coding Approach to Signed Graphs , 1994, SIAM J. Discret. Math..

[14]  Hal L. Smith Systems of ordinary differential equations which generate an order preserving flow. A survey of results , 1988 .

[15]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[16]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[17]  Alberto Caprara,et al.  Packing cycles in undirected graphs , 2003, J. Algorithms.

[18]  Abdul Salam Jarrah,et al.  The effect of negative feedback loops on the dynamics of boolean networks. , 2007, Biophysical journal.

[19]  G. Kirchhoff Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .

[20]  Eduardo Sontag,et al.  Proximity of intracellular regulatory networks to monotone systems. , 2008, IET systems biology.

[21]  Eduardo D. Sontag,et al.  Algorithmic and complexity results for decompositions of biological networks into monotone subsystems , 2007, Biosyst..

[22]  Eduardo D. Sontag,et al.  Monotone and near-monotone biochemical networks , 2007, Systems and Synthetic Biology.

[23]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[24]  Gerard Toulouse,et al.  Theory of the frustration effect in spin glasses: I , 1986 .