A review of plasma enhanced chemical vapour deposition of carbon nanotubes

Plasma enhanced chemical vapour deposition (PECVD) has been widely discussed in the literature for the growth of carbon nanotubes (CNTs) and carbon nanofibres (CNFs) in recent years. Advantages claimed include lower growth temperatures relative to thermal CVD and the ability to grow individual, free-standing, vertical CNFs instead of tower-like structures or ensembles. This paper reviews the current status of the technology including equipment, plasma chemistry, diagnostics and modelling, and mechanisms. Recent accomplishments include PECVD of single-walled CNTs and growth at low temperatures for handling delicate substrates such as glass.

[1]  Gehan A. J. Amaratunga,et al.  The Significance of Plasma Heating in Carbon Nanotube and Nanofiber Growth , 2004 .

[2]  M. Dresselhaus,et al.  Raman spectroscopic characterization of submicron vapor-grown carbon fibers and carbon nanofibers obtained by pyrolyzing hydrocarbons , 1999 .

[3]  J. H. Wang,et al.  Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform thin films , 2001 .

[4]  R. Hatakeyama,et al.  Experimental study of fullerene-family formation using radio-frequency-discharge reactive plasmas , 2002 .

[5]  John Robertson,et al.  Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition , 2003 .

[6]  Zhifeng Ren,et al.  Growth of Highly-Oriented Carbon Nanotubes by Plasma-Enhanced Hot Filament Chemical Vapor Deposition , 1998 .

[7]  W. C. Tjiu,et al.  Synthesis of well-aligned multiwalled carbon nanotubes on Ni catalyst using radio frequency plasma-enhanced chemical vapor deposition , 2001 .

[8]  Y. Shibuta,et al.  Molecular dynamics simulation of generation process of SWNTs , 2002 .

[9]  Synthesis of vertically aligned carbon nanotubes on submicron-sized dot-catalyst array using plasma CVD method , 2008 .

[10]  W. I. Milne,et al.  Carbon nanotubes by plasma-enhanced chemical vapor deposition , 2006 .

[11]  J. M. Kim,et al.  NH3 effect on the growth of carbon nanotubes on glass substrate in plasma enhanced chemical vapor deposition , 2002 .

[12]  Shui-Tong Lee,et al.  Uniform-diameter, aligned carbon nanotubes from microwave plasma-enhanced chemical-vapor deposition , 2005 .

[13]  Zhifeng Ren,et al.  Growth of large periodic arrays of carbon nanotubes , 2003 .

[14]  J. Kenny,et al.  Formation of carbon nanotubes by plasma enhanced chemical vapor deposition: Role of nitrogen and catalyst layer thickness , 2002 .

[15]  Toshiaki Kato,et al.  Formation of freestanding single-walled carbon nanotubes by plasma-enhanced CVD , 2006 .

[16]  Kostya Ostrikov,et al.  Colloquium: Reactive plasmas as a versatile nanofabrication tool , 2005 .

[17]  D. Gruen,et al.  Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition , 1998 .

[18]  O. Zhou,et al.  Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition , 2000 .

[19]  M. L. Simpson,et al.  Initial growth of vertically aligned carbon nanofibers , 2004 .

[20]  F. Ding,et al.  Dependence of SWNT growth mechanism on temperature and catalyst particle size: Bulk versus surface diffusion , 2005, cond-mat/0607797.

[21]  Yun-Hsiang Wang,et al.  Synthesis of large area aligned carbon nanotube arrays from C2H2–H2 mixture by rf plasma-enhanced chemical vapor deposition , 2001 .

[22]  M. Meyyappan,et al.  Ultrasensitive label-free DNA analysis using an electronic chip based on carbon nanotube nanoelectrode arrays , 2003, Nanotechnology.

[23]  Kenji Kawaguchi,et al.  Fabrication of carbon nanotube assemblies on Ni–Mo substrates mimics law of natural forest growth , 2003 .

[24]  Chih-Ming Hsu,et al.  The role of nitrogen in carbon nanotube formation , 2003 .

[25]  Yayi Wei,et al.  Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition , 2001 .

[26]  M. Meyyappan,et al.  Structural and Electrical Characterization of Carbon Nanofibers for Interconnect Via Applications , 2007, IEEE Transactions on Nanotechnology.

[27]  G. Tibbetts Carbon fibers produced by pyrolysis of natural gas in stainless steel tubes , 1983 .

[28]  G. Amaratunga,et al.  Characterization of plasma-enhanced chemical vapor deposition carbon nanotubes by Auger electron spectroscopy , 2002 .

[29]  N. A. Azarenkov,et al.  Inductively coupled Ar/CH₄/H₂plasmas for low-temperature deposition of ordered carbon nanostructures , 2004 .

[30]  Y. Shiratori,et al.  Vertically aligned carbon nanotubes produced by radio-frequency plasma-enhanced chemical vapor deposition at low temperature and their growth mechanism , 2004 .

[31]  M. L. Simpson,et al.  Large-scale synthesis of arrays of high-aspect-ratio rigid vertically aligned carbon nanofibres , 2003 .

[32]  Zhong Lin Wang,et al.  Well-aligned graphitic nanofibers synthesized by plasma-assisted chemical vapor deposition , 1997 .

[33]  H. Kawarada,et al.  Large-area synthesis of carbon nanofibers by low-power microwave plasma-assisted CVD , 2004 .

[34]  Alan M. Cassell,et al.  Carbon nanotube growth by PECVD: a review , 2003 .

[35]  H. Terryn,et al.  Study of the catalyst evolution during annealing preceding the growth of carbon nanotubes by microwave plasma-enhanced chemical vapour deposition , 2007 .

[36]  M. Meyyappan,et al.  An investigation of plasma chemistry for dc plasma enhanced chemical vapour deposition of carbon nanotubes and nanofibres , 2005 .

[37]  E. Campbell,et al.  High growth rates and wall decoration of carbon nanotubes grown by plasma-enhanced chemical vapour deposition , 2004 .

[38]  Y. Sung,et al.  RF PECVD Characteristics for the Growth of Carbon Nanotubes in a $\hbox{CH}_{4}$–$ \hbox{N}_{2}$ Mixed Gas , 2007, IEEE Transactions on Plasma Science.

[39]  A. K. Shukla,et al.  Growth, structure and field emission characteristics of petal like carbon nano-structured thin films , 2005 .

[40]  S. Yu,et al.  Tip growth model of carbon tubules grown on the glass substrate by plasma enhanced chemical vapor deposition , 2002 .

[41]  M. Meyyappan,et al.  Combinatorial chips for optimizing the growth and integration of carbon nanofibre based devices , 2003 .

[42]  Zhifeng Ren,et al.  Nanoelectrode arrays based on low site density aligned carbon nanotubes , 2003 .

[43]  William I. Milne,et al.  Factors determining properties of multi-walled carbon nanotubes/fibres deposited by PECVD , 2007 .

[44]  Jin Jang,et al.  Optical emission spectroscopy study for optimization of carbon nanotubes growth by a triode plasma chemical vapor deposition , 2006 .

[45]  S. Nishino,et al.  Growth of well-aligned carbon nanotubes on nickel by hot-filament-assisted dc plasma chemical vapor deposition in a CH4/H2 plasma , 2001 .

[46]  Gary G. Tibbetts,et al.  Why are carbon filaments tubular , 1984 .

[47]  Michael L. Simpson,et al.  Tracking Gene Expression after DNA Delivery Using Spatially Indexed Nanofiber Arrays , 2004 .

[48]  I. Alexandrou,et al.  The role of the catalytic particle in the growth of carbon nanotubes by plasma enhanced chemical vapor deposition , 2004 .

[49]  M. Meyyappan,et al.  Thermal Interface Properties of Cu-filled Vertically Aligned Carbon Nanofiber Arrays , 2004 .

[50]  Kenichi Kojima,et al.  Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition , 2005 .

[51]  Takamichi Hirata,et al.  Structure control of carbon nanotubes using radio-frequency plasma enhanced chemical vapor deposition , 2004 .

[52]  X. Bai,et al.  Low temperature growth of single-walled carbon nanotubes: Small diameters with narrow distribution , 2006 .

[53]  H. Matsuoka,et al.  Effects of strong magnetic field on carbon nanotube formation using rf glow-discharge plasma , 2006 .

[54]  M. Hon,et al.  Sheath-dependent orientation control of carbon nanofibres and carbon nanotubes during plasma-enhanced chemical vapour deposition , 2003 .

[55]  O. Takai,et al.  Role of carbon atoms in plasma-enhanced chemical vapor deposition for carbon nanotubes synthesis , 2006 .

[56]  L. Delzeit,et al.  Vertically aligned carbon nanotube heterojunctions , 2004 .

[57]  D. Hash,et al.  Residual gas analysis of a dc plasma for carbon nanofiber growth , 2004 .

[58]  D. Zeze,et al.  Branched carbon nanofiber network synthesis at room temperature using radio frequency supported microwave plasmas , 2004 .

[59]  Masa-aki Suzuki,et al.  Effect of oxygen and hydrogen addition on the low-temperature synthesis of carbon nanofibers using a low-temperature CO/Ar DC plasma , 2008 .

[60]  Sajad Haq,et al.  Large-area synthesis of carbon nanofibres at room temperature , 2002, Nature materials.

[61]  D. Hash,et al.  Model based comparison of thermal and plasma chemical vapor deposition of carbon nanotubes , 2003 .

[62]  Jin Jang,et al.  Controlled density of vertically aligned carbon nanotubes in a triode plasma chemical vapor deposition system , 2006 .

[63]  M. Meyyappan,et al.  Bottom-up approach for carbon nanotube interconnects , 2003 .

[64]  Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth. , 2004, The Journal of chemical physics.

[65]  D. H. Kim,et al.  Low temperature growth of carbon nanotubes in a magnetic field , 2007 .

[66]  Seong Chu Lim,et al.  Effect of surface morphology of Ni thin film on the growth of aligned carbon nanotubes by microwave plasma-enhanced chemical vapor deposition , 2000 .

[67]  Toshiaki Kato,et al.  Diffusion plasma chemical vapour deposition yielding freestanding individual single-walled carbon nanotubes on a silicon-based flat substrate , 2006 .

[68]  H. Radamson,et al.  PECVD-grown carbon nanotubes on silicon substrates with a nickel-seeded tip-growth structure , 2006 .

[69]  M. Tanemura,et al.  Growth of aligned carbon nanotubes by plasma-enhanced chemical vapor deposition: Optimization of growth parameters , 2001 .

[70]  Jun Li,et al.  Novel Three-Dimensional Electrodes: Electrochemical Properties of Carbon Nanotube Ensembles , 2002 .

[71]  J. Robertson,et al.  Effects of pre-treatment and plasma enhancement on chemical vapor deposition of carbon nanotubes from ultra-thin catalyst films , 2006 .

[72]  H. Kawarada,et al.  Direct evidence for root growth of vertically aligned single-walled carbon nanotubes by microwave plasma chemical vapor deposition. , 2005, The journal of physical chemistry. B.

[73]  M. Meyyappan,et al.  Reactor design considerations in the hot filament/direct current plasma synthesis of carbon nanofibers , 2003 .

[74]  Toshiaki Kato,et al.  Simple methods for site-controlled carbon nanotube growth using radio-frequency plasma-enhanced chemical vapor deposition , 2004 .

[75]  Yoichiro Sato,et al.  Diffusion-controlled kinetics of carbon nanotube forest growth by chemical vapor deposition , 2003 .

[76]  A. Chuang,et al.  Low temperature synthesis of carbon nanofibres on carbon fibre matrices , 2005 .

[77]  J. Robertson,et al.  Catalytic growth of carbon nanotubes on stainless steel: Characterization and frictional properties , 2008 .

[78]  D. J. Johnson,et al.  Plasma-induced low-temperature growth of graphitic nanofibers on nickel substrates , 1998 .

[79]  Gehan A. J. Amaratunga,et al.  Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibres—how uniform do they grow? , 2003 .

[80]  D. Hash,et al.  Modelling of inductively coupled plasma processing reactors , 2001 .

[81]  Gehan A. J. Amaratunga,et al.  Plasma composition during plasma-enhanced chemical vapor deposition of carbon nanotubes , 2004 .

[82]  T. Nozaki,et al.  Carbon nanotubes deposition in glow barrier discharge enhanced catalytic CVD , 2002 .

[83]  A. Ding,et al.  Formation mechanism of single-wall carbon nanotubes on liquid-metal particles , 1999 .

[84]  S. Tsai,et al.  Bias-enhanced nucleation and growth of the aligned carbon nanotubes with open ends under microwave plasma synthesis , 1999 .

[85]  S. Honda,et al.  Effect of oxygen addition to methane on growth of vertically oriented carbon nanotubes by radio-frequency plasma-enhanced chemical-vapor deposition , 2005 .

[86]  R. J. Waite,et al.  Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene , 1973 .

[87]  Sungho Jin,et al.  Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition , 2000 .

[88]  W. Park,et al.  Single-walled carbon nanotube growth on glass , 2007 .

[89]  E. Campbell,et al.  In situ growth rate measurements during plasma-enhanced chemical vapour deposition of vertically aligned multiwall carbon nanotube films , 2007 .

[90]  R. Nemanich,et al.  Role of thin Fe catalyst in the synthesis of double- and single-wall carbon nanotubes via microwave chemical vapor deposition , 2004 .

[91]  J. Nørskov,et al.  Atomic-scale imaging of carbon nanofibre growth , 2004, Nature.

[92]  M. Sennett,et al.  Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes , 2002 .

[93]  Jun Li,et al.  Vertically aligned carbon nanofiber arrays: an advance toward electrical-neural interfaces. , 2006, Small.

[94]  Michael L. Simpson,et al.  Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition , 2001 .

[95]  G. Park,et al.  Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition , 2000 .

[96]  M. Meyyappan,et al.  Palladium catalyzed formation of carbon nanofibers by plasma enhanced chemical vapor deposition , 2007 .

[97]  J. Nørskov,et al.  Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations , 2006 .

[98]  Michael L. Simpson,et al.  Vertically Aligned Carbon Nanofibers and Related Structures: Controlled Synthesis and Directed Assembly , 2005 .

[99]  H. Dai,et al.  Preferential Growth of Semiconducting Single-Walled Carbon Nanotubes by a Plasma Enhanced CVD Method , 2004 .

[100]  T. Fisher,et al.  Freestanding vertically oriented single-walled carbon nanotubes synthesized using microwave plasma-enhanced CVD , 2006 .

[101]  Gehan A. J. Amaratunga,et al.  Uniform patterned growth of carbon nanotubes without surface carbon , 2001 .

[102]  M. Dresselhaus,et al.  Effects of boron doping for the structural evolution of vapor-grown carbon fibers studied by Raman spectroscopy , 2000 .

[103]  M. Meyyappan,et al.  Integrating Carbon Nanotubes For Atomic Force Microscopy Imaging Applications , 2004 .

[104]  L. Baylor,et al.  Growth of vertically aligned carbon nanofibers by low-pressure inductively coupled plasma-enhanced chemical vapor deposition , 2003 .

[105]  T. Gemming,et al.  On the diffusion-controlled growth of multiwalled carbon nanotubes , 2005 .

[106]  H. Kawarada,et al.  Very High Yield Growth of Vertically Aligned Single‐Walled Carbon Nanotubes by Point‐Arc Microwave Plasma CVD , 2005 .

[107]  E. Campbell,et al.  Plasma-enhanced chemical vapour deposition growth of carbon nanotubes on different metal underlayers , 2005 .

[108]  G. Park,et al.  Growth of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition at low temperature , 2000 .

[109]  A. Bogaerts,et al.  Numerical Study of the Size-Dependent Melting Mechanisms of Nickel Nanoclusters , 2009 .

[110]  M. L. Simpson,et al.  Growth rate of plasma-synthesized vertically aligned carbon nanofibers , 2002 .

[111]  J. Robertson,et al.  Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates , 2003 .

[112]  P. Ho,et al.  Comparison study of catalyst nanoparticle formation and carbon nanotube growth: Support effect , 2007 .

[113]  Y. Shibuta,et al.  Molecular dynamics simulation of formation process of single-walled carbon nanotubes by CCVD method , 2003 .

[114]  M. Meyyappan,et al.  Growth of carbon nanotubes by thermal and plasma chemical vapour deposition processes and applications in microscopy , 2002 .

[115]  M. Siegal,et al.  Synthesis of large arrays of well-aligned carbon nanotubes on glass , 1998, Science.

[116]  Takahiro Matsumoto,et al.  Point x-ray source using graphite nanofibers and its application to x-ray radiography , 2003 .

[117]  R. J. Waite,et al.  Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene , 1972 .

[118]  M. Meyyappan,et al.  Plasma Reactor Modeling , 2000 .

[119]  T. Fisher,et al.  Parametric study of synthesis conditions in plasma-enhanced CVD of high-quality single-walled carbon nanotubes , 2006 .

[120]  Jun Li,et al.  Wafer-scale fabrication of patterned carbon nanofiber nanoelectrode arrays: a route for development of multiplexed, ultrasensitive disposable biosensors. , 2009, Biosensors & bioelectronics.

[121]  A. Cutler,et al.  CARBON DEPOSITION AND HYDROCARBON FORMATION ON GROUP VIII METAL CATALYSTS , 1998 .

[122]  Nitrogen induced structure control of vertically aligned carbon nanotubes synthesized by microwave plasma enhanced chemical vapor deposition , 2002 .

[123]  F. Ding,et al.  The role of the catalytic particle temperature gradient for SWNT growth from small particles , 2004, cond-mat/0607799.

[124]  G. Yeom,et al.  Field emission properties of carbon nanotubes synthesized by capillary type atmospheric pressure plasma enhanced chemical vapor deposition at low temperature , 2006 .

[125]  J. Robertson,et al.  Low-temperature plasma enhanced chemical vapour deposition of carbon nanotubes , 2004 .

[126]  M. Meyyappan,et al.  Characterization of a radio frequency carbon nanotube growth plasma by ultraviolet absorption and optical emission spectroscopy , 2005 .

[127]  Limits of the PECVD process for single wall carbon nanotubes growth , 2006 .

[128]  T. Nozaki,et al.  Deposition of vertically oriented carbon nanofibers in atmospheric pressure radio frequency discharge , 2006 .

[129]  M. Meyyappan,et al.  Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA Detection , 2003 .

[130]  M. L. Simpson,et al.  Transition between 'base' and 'tip' carbon nanofiber growth modes , 2002 .

[131]  W. Park,et al.  Low-temperature growth of single-walled carbon nanotubes by water plasma chemical vapor deposition. , 2005, Journal of the American Chemical Society.

[132]  Chong-Yun Park,et al.  Growth and emission characteristics of vertically well-aligned carbon nanotubes grown on glass substrate by hot filament plasma-enhanced chemical vapor deposition , 2000 .

[133]  Vladimir I. Merkulov,et al.  Patterned growth of individual and multiple vertically aligned carbon nanofibers , 2000 .

[134]  Otto Zhou,et al.  Plasma-induced alignment of carbon nanotubes , 2000 .

[135]  R. Hatakeyama,et al.  Production of carbon nanotubes by controlling radio-frequency glow discharge with reactive gases , 2002 .

[136]  Impact of the etching gas on vertically oriented single wall and few walled carbon nanotubes by plasma enhanced chemical vapor deposition , 2007 .

[137]  M. Meyyappan,et al.  Large-Scale Fabrication of Carbon Nanotube Probe Tips for Atomic Force Microscopy Critical Dimension Imaging Applications , 2004 .

[138]  M. Meyyappan,et al.  Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor , 2002 .

[139]  Vikram Kumar,et al.  Growth and microstructures of carbon nanotube films prepared by microwave plasma enhanced chemical vapor deposition process , 2006 .

[140]  John Robertson,et al.  Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition , 2001 .

[141]  Yoichiro Sato,et al.  Growth mechanism of carbon nanotube forests by chemical vapor deposition , 2002 .

[142]  L. Qu,et al.  Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct use in FETs. , 2008, Nano letters.

[143]  Enric Bertran,et al.  Carbon nanotubes grown by asymmetric bipolar pulsed-DC PECVD ☆ , 2007 .

[144]  Toshiaki Kato,et al.  Magnetron-type radio-frequency plasma control yielding vertically well-aligned carbon nanotube growth , 2003 .

[145]  J. H. Whealton,et al.  Controlled alignment of carbon nanofibers in a large-scale synthesis process , 2002 .

[146]  Low temperature plasma chemical vapour deposition of carbon nanotubes , 2002 .

[147]  M. L. Simpson,et al.  Shaping carbon nanostructures by controlling the synthesis process , 2001 .

[148]  Zhifeng Ren,et al.  Growth of a Single Freestanding Multiwall Carbon Nanotube on each Nanonickel Dot , 1999 .

[149]  Chih-Ming Hsu,et al.  Growth of the large area horizontally-aligned carbon nanotubes by ECR-CVD , 2002 .

[150]  Y. Suda,et al.  Predicting the amount of carbon in carbon nanotubes grown by CH4 rf plasmas , 2006 .

[151]  L. Schlapbach,et al.  Electron field emission from phase pure nanotube films grown in a methane/hydrogen plasma , 1998 .

[152]  M. Okai,et al.  Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition , 2000 .

[153]  J. Robertson,et al.  Effects of catalyst film thickness on plasma-enhanced carbon nanotube growth , 2005 .

[154]  Takamichi Hirata,et al.  Single-walled carbon nanotubes produced by plasma-enhanced chemical vapor deposition , 2003 .

[155]  T. Nozaki,et al.  Fabrication of vertically aligned single-walled carbon nanotubes in atmospheric pressure non-thermal plasma CVD , 2007 .

[156]  R. Hatakeyama,et al.  Effects of micro- and macro-plasma-sheath electric fields on carbon nanotube growth in a cross-field radio-frequency discharge , 2004 .

[157]  Growth of carbon nanotubes by atmospheric pressure plasma enhanced chemical vapor deposition using NiCr catalyst , 2007 .

[158]  Soon Fatt Yoon,et al.  Carbon films with high density nanotubes produced using microwave plasma assisted CVD , 2000 .

[159]  Characteristics of aligned carbon nanofibers for interconnect via applications , 2006 .