Strength Pareto Particle Swarm Optimization and Hybrid EA-PSO for Multi-Objective Optimization

This paper proposes an efficient particle swarm optimization (PSO) technique that can handle multi-objective optimization problems. It is based on the strength Pareto approach originally used in evolutionary algorithms (EA). The proposed modified particle swarm algorithm is used to build three hybrid EA-PSO algorithms to solve different multi-objective optimization problems. This algorithm and its hybrid forms are tested using seven benchmarks from the literature and the results are compared to the strength Pareto evolutionary algorithm (SPEA2) and a competitive multi-objective PSO using several metrics. The proposed algorithm shows a slower convergence, compared to the other algorithms, but requires less CPU time. Combining PSO and evolutionary algorithms leads to superior hybrid algorithms that outperform SPEA2, the competitive multi-objective PSO (MO-PSO), and the proposed strength Pareto PSO based on different metrics.

[1]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[2]  Shiyou Yang,et al.  A particle swarm optimization-based method for multiobjective design optimizations , 2005, IEEE Transactions on Magnetics.

[3]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[4]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[5]  Y. Rahmat-Samii,et al.  Particle swarm, genetic algorithm, and their hybrids: optimization of a profiled corrugated horn antenna , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[6]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[7]  Ed F. Deprettere,et al.  A Methodology for Architecture Exploration of Heterogeneous Signal Processing Systems , 2001, J. VLSI Signal Process..

[8]  Jörg Henkel,et al.  System-level exploration for Pareto-optimal configurations in parameterized systems-on-a-chip , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[9]  Xiaodong Li,et al.  A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization , 2003, GECCO.

[10]  Derek A. Linkens,et al.  Adaptive Weighted Particle Swarm Optimisation for Multi-objective Optimal Design of Alloy Steels , 2004, PPSN.

[11]  Andy D. Pimentel,et al.  A systematic approach to exploring embedded system architectures at multiple abstraction levels , 2006, IEEE Transactions on Computers.

[12]  James Kennedy,et al.  Defining a Standard for Particle Swarm Optimization , 2007, 2007 IEEE Swarm Intelligence Symposium.

[13]  Chia-Feng Juang,et al.  A hybrid of genetic algorithm and particle swarm optimization for recurrent network design , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[14]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[15]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[16]  Peng-Yeng Yin,et al.  Multi-objective task allocation in distributed computing systems by hybrid particle swarm optimization , 2007, Appl. Math. Comput..

[17]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[18]  Günter Rudolph,et al.  Capabilities of EMOA to Detect and Preserve Equivalent Pareto Subsets , 2007, EMO.

[19]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[20]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[21]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[22]  Carlos A. Coello Coello,et al.  Fitness inheritance in multi-objective particle swarm optimization , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[23]  Jürgen Teich,et al.  Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[24]  Terence Soule,et al.  Breeding swarms: a GA/PSO hybrid , 2005, GECCO '05.

[25]  Jing J. Liang,et al.  Problem Definitions for Performance Assessment of Multi-objective Optimization Algorithms , 2007 .

[26]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[27]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[28]  Yanchun Liang,et al.  An improved genetic algorithm with variable population-size and a PSO-GA based hybrid evolutionary algorithm , 2003, Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693).

[29]  D.H. Werner,et al.  Particle swarm optimization versus genetic algorithms for phased array synthesis , 2004, IEEE Transactions on Antennas and Propagation.

[30]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[31]  S. Areibi,et al.  An architecture exploration framework for DSP applications , 2008, 2008 Canadian Conference on Electrical and Computer Engineering.

[32]  Kazuyuki Mori,et al.  Modified multiobjective particle swarm optimization method and its application to energy management system for factories , 2006 .

[33]  Paul H. Calamai,et al.  Adaptive Control of Genetic Parameters for Dynamic Combinatorial Problems , 2007, Metaheuristics.

[34]  Luis A. Bastidas,et al.  Multiobjective particle swarm optimization for parameter estimation in hydrology , 2006 .