On Weak Invariance Principles for Partial Sums

Given a sequence of random functionals $$\bigl \{X_k(u)\bigr \}_{k \in \mathbb {Z}}$${Xk(u)}k∈Z, $$u \in \mathbf{I}^d$$u∈Id, $$d \ge 1$$d≥1, the normalized partial sums $$\check{S}_{nt}(u) = n^{-1/2}\bigl (X_1(u) + \cdots + X_{\lfloor n t \rfloor }(u)\bigr )$$Sˇnt(u)=n-1/2(X1(u)+⋯+X⌊nt⌋(u)), $$t \in [0,1]$$t∈[0,1] and its polygonal version $${S}_{nt}(u)$$Snt(u) are considered under a weak dependence assumption and $$p > 2$$p>2 moments. Weak invariance principles in the space of continuous functions and càdlàg functions are established. A particular emphasis is put on the process $$\check{S}_{nt}(\widehat{\theta })$$Sˇnt(θ^), where $$\widehat{\theta } \xrightarrow {\mathbb {P}} \theta $$θ^→Pθ, and weaker moment conditions ($$p = 2$$p=2 if $$d = 1$$d=1) are assumed.

[1]  Richard C. Bradley,et al.  Introduction to strong mixing conditions , 2007 .

[2]  H. Marie TESTS AND ESTIMATORS FOR THE CHANGE POINT PROBLEM BASED ON M - STATISTICS , 1996 .

[3]  A sequential empirical CLT for multiple mixing processes with application to $\mathcal{B}$-geometrically ergodic Markov chains , 2013, 1303.4537.

[4]  Jérôme Dedecker,et al.  A new covariance inequality and applications , 2003 .

[5]  E. Rio Processus empiriques absolument réguliers et entropie universelle , 1998 .

[6]  Ruey S. Tsay,et al.  Analysis of Financial Time Series , 2005 .

[7]  Ruey S. Tsay,et al.  Analysis of Financial Time Series: Tsay/Analysis of Financial Time Series , 2005 .

[8]  W. Philipp Almost sure invariance principles for sums of B-valued random variables , 1979 .

[9]  A. V. D. Vaart,et al.  Asymptotic Statistics: Frontmatter , 1998 .

[10]  Walter Philipp,et al.  Almost Sure Invariance Principles for Partial Sums of Mixing $B$-Valued Random Variables , 1980 .

[11]  Wei Biao Wu,et al.  STRONG INVARIANCE PRINCIPLES FOR DEPENDENT RANDOM VARIABLES , 2007, 0711.3674.

[12]  P. Bougerol,et al.  Strict Stationarity of Generalized Autoregressive Processes , 1992 .

[13]  S. Hörmann,et al.  The functional central limit theorem for a family of GARCH observations with applications , 2008 .

[14]  S. Levental A uniform CLT for uniformly bounded families of martingale differences , 1989 .

[15]  M. A. Arcones,et al.  Limit Theorems for Nonlinear Functionals of a Stationary Gaussian Sequence of Vectors , 1994 .

[16]  Herold Dehling,et al.  A note on a theorem of Berkes and Philipp , 1983 .

[17]  Peter J. Bickel,et al.  Convergence Criteria for Multiparameter Stochastic Processes and Some Applications , 1971 .

[18]  W. Philipp,et al.  Almost sure invariance principles for sums of $B$-valued random variables with applications to random Fourier series and the empirical characteristic process , 1982 .

[19]  D. Pollard,et al.  An introduction to functional central limit theorems for dependent stochastic processes , 1994 .

[20]  S. B. Hariz Uniform CLT for empirical process , 2005 .

[21]  E. J. Hannan,et al.  Central limit theorems for time series regression , 1973 .

[22]  Invariance principle for stochastic processes with short memory , 2006, math/0612707.

[23]  W. Philipp,et al.  Approximation Thorems for Independent and Weakly Dependent Random Vectors , 1979 .

[24]  AN INVARIANCE PRINCIPLE FOR WEAKLY DEPENDENT STATIONARY GENERAL MODELS , 2006, math/0603221.

[25]  E. Eberlein An invariance principle for lattices of dependent random variables , 1979 .

[26]  Christian Pigorsch,et al.  Financial Economics, Fat-Tailed Distributions , 2009, Encyclopedia of Complexity and Systems Science.

[27]  R. Dudley Distances of Probability Measures and Random Variables , 1968 .

[28]  Lajos Horváth,et al.  ASYMPTOTIC BEHAVIOR OF TRIMMED SUMS , 2012 .

[29]  J. Dedecker,et al.  New dependence coefficients. Examples and applications to statistics , 2005 .

[30]  Magda Peligrad,et al.  Recent advances in invariance principles for stationary sequences , 2006, math/0601315.

[31]  W. Philipp,et al.  Almost Sure Invariance Principles for Weakly Dependent Vector-Valued Random Variables , 1982 .

[32]  W. Wu,et al.  Nonlinear system theory: another look at dependence. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  W. Philipp Weak and $L^p$-Invariance Principles for Sums of $B$-Valued Random Variables , 1980 .

[34]  P. Massart,et al.  Invariance principles for absolutely regular empirical processes , 1995 .

[35]  Herold Dehling,et al.  Limit theorems for sums of weakly dependent Banach space valued random variables , 1983 .

[36]  E. Eberlein Strong approximation of very weak Bernoulli processes , 1983 .

[37]  B. Mandelbrot New Methods in Statistical Economics , 1963, Journal of Political Economy.

[38]  E. J. Hannan,et al.  Multiple time series , 1970 .

[39]  A. Aue,et al.  Selection from a stable box , 2008, 0803.0868.

[40]  K. Kroner,et al.  The relationship between GARCH and symmetric stable processes: Finding the source of fat tails in financial data , 1995 .