Spatiotemporal dynamic of surface water bodies using Landsat time-series data from 1999 to 2011

[1]  M. Barson,et al.  Remote sensing of Australian wetlands: An evaluation of Landsat TM data for inventory and classification , 1993 .

[2]  C. Brodley,et al.  Decision tree classification of land cover from remotely sensed data , 1997 .

[3]  L. Smith Satellite remote sensing of river inundation area, stage, and discharge: a review , 1997 .

[4]  Stephen V. Stehman,et al.  Design and Analysis for Thematic Map Accuracy Assessment: Fundamental Principles , 1998 .

[5]  N. Davidson,et al.  Global wetland inventory – current status and future priorities , 1999 .

[6]  P. Frazier,et al.  Water body detection and delineation with Landsat TM data. , 2000 .

[7]  Giles M. Foody,et al.  Status of land cover classification accuracy assessment , 2002 .

[8]  A. McMichael,et al.  Ecosystems and Human well-being , 2003 .

[9]  J. Wickham,et al.  Effects of landscape characteristics on land-cover class accuracy , 2003 .

[10]  E Brown de Colstoun,et al.  National Park vegetation mapping using multitemporal Landsat 7 data and a decision tree classifier , 2003 .

[11]  A. Roth,et al.  The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar , 2003 .

[12]  J. Wickham,et al.  Thematic accuracy of the 1992 National Land-Cover Data for the eastern United States: Statistical methodology and regional results , 2003 .

[13]  P. Adam,et al.  A review of wetland inventory and classification in Australia , 1995, Vegetatio.

[14]  Stacy L. Ozesmi,et al.  Satellite remote sensing of wetlands , 2002, Wetlands Ecology and Management.

[15]  Richard T. Kingsford,et al.  Classifying landform at broad spatial scales: the distribution and conservation of wetlands in New South Wales, Australia , 2004 .

[16]  J. A. Davis,et al.  Loss and degradation of wetlands in southwestern Australia: underlying causes, consequences and solutions , 1999, Wetlands Ecology and Management.

[17]  D. Lettenmaier,et al.  Measuring surface water from space , 2004 .

[18]  V. Semeniuk,et al.  A geomorphic approach to global classification for inland wetlands , 1995, Vegetatio.

[19]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[20]  J. Zedler,et al.  Wetland resources : Status, trends, ecosystem services, and restorability , 2005 .

[21]  Darrel L. Williams,et al.  Landsat: Yesterday, Today, and Tomorrow , 2006 .

[22]  C. Wright,et al.  Improved wetland remote sensing in Yellowstone National Park using classification trees to combine TM imagery and ancillary environmental data , 2007 .

[23]  G. L. Schmidt,et al.  A multi‐scale segmentation approach to filling gaps in Landsat ETM+ SLC‐off images , 2007 .

[24]  P. Horwitz,et al.  ASSESSMENT OF WETLAND INVERTEBRATE AND FISH BIODIVERSITY FOR THE GNANGARA SUSTAINABILITY STRATEGY (GSS) , 2008 .

[25]  P. Horwitz,et al.  Macroinvertebrate cycles of decline and recovery in Swan Coastal Plain (Western Australia) wetlands affected by drought-induced acidification , 2009, Hydrobiologia.

[26]  V. Haverd,et al.  CSIRO Marine and Atmospheric Research Component: Final Report for Phase 3 , 2008 .

[27]  D. Roy,et al.  A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin , 2008 .

[28]  P. Horwitz,et al.  Hydrological change escalates risk of ecosystem stress in Australia's threatened biodiversity hotspot , 2008 .

[29]  B. Markham,et al.  Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors , 2009 .

[30]  R. Lawrence,et al.  Mapping wetlands and riparian areas using Landsat ETM+ imagery and decision-tree-based models , 2006, Wetlands.

[31]  Molly Reif,et al.  Satellite remote sensing of isolated wetlands using object-oriented classification of Landsat-7 data , 2009, Wetlands.

[32]  Rick L. Lawrence,et al.  Change detection of wetland ecosystems using Landsat imagery and change vector analysis , 2007, Wetlands.

[33]  R. Weller Boomtown 2050: Scenarios for a Rapidly Growing City , 2009 .

[34]  D. Roy,et al.  Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States , 2010 .

[35]  David P. Roy,et al.  Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices , 2010 .

[36]  R. Froend,et al.  Phreatophytic vegetation response to climatic and abstraction-induced groundwater drawdown: Examples of long-term spatial and temporal variability in community response , 2010 .

[37]  J. Chambers,et al.  Multiple stressors and regime shifts in shallow aquatic ecosystems in antipodean landscapes. , 2010 .

[38]  Stephen V. Stehman,et al.  International Journal of Applied Earth Observation and Geoinformation: Time-Series Analysis of Multi-Resolution Optical Imagery for Quantifying Forest Cover Loss in Sumatra and Kalimantan, Indonesia , 2011 .

[39]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[40]  Matthew C. Hansen,et al.  Remotely sensed forest cover loss shows high spatial and temporal variation across Sumatera and Kalimantan, Indonesia 2000–2008 , 2011 .

[41]  K. A. Parton,et al.  The status of wetlands and the predicted effects of global climate change: the situation in Australia , 2011, Aquatic Sciences.

[42]  Thomas R. Loveland,et al.  A review of large area monitoring of land cover change using Landsat data , 2012 .