Optimal Distance Labeling for Interval Graphs and Related Graph Families

A distance labeling scheme is a distributed graph representation that assigns labels to the vertices and enables answering distance queries between any pair $(x,y)$ of vertices by using only the labels of $x$ and $y$. This paper presents an optimal distance labeling scheme with labels of $\mathcal{O}(\log n)$ bits for the $n$-vertex interval graphs family. It improves by $\log n$ factor the best known upper bound of [M. Katz, N. A. Katz, and D. Peleg, Distance labeling schemes for well-separated graph classes, in Proceedings of the 17th Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Comput. Sci. 1770, Springer-Verlag, Berlin, 2000, pp. 516-528]. Moreover, the scheme supports constant time distance queries, and if the interval representation of the input graph is given and the intervals are sorted, then the set of labels can be computed in $\mathcal{O}(n)$ time. Our result is tight as we show that the length of any label is at least $3\log n-\mathcal{O}(\log\log n)$ bits. This lower bound derives from a new estimator of the number of unlabeled $n$-vertex interval graphs, that is, $2^{\Omega(n \log n)}$. To our knowledge, interval graphs are thereby the first known nontrivial hereditary family with $2^{\Omega(n f(n))}$ unlabeled elements and with a distance labeling scheme with $f(n)$ bit labels.

[1]  Cyril Gavoille,et al.  Approximate Distance Labeling Schemes , 2000, Electron. Notes Discret. Math..

[2]  W. Trotter,et al.  Combinatorics and Partially Ordered Sets: Dimension Theory , 1992 .

[3]  Mikkel Thorup,et al.  Approximate distance oracles , 2001, JACM.

[4]  Kunal Talwar,et al.  Bypassing the embedding: algorithms for low dimensional metrics , 2004, STOC '04.

[5]  Cyril Gavoille,et al.  Localized and Compact Data-Structure for Comparability Graphs , 2005, ISAAC.

[6]  Sariel Har-Peled,et al.  Fast construction of nets in low dimensional metrics, and their applications , 2004, SCG.

[7]  David Peleg,et al.  Compact and localized distributed data structures , 2003, Distributed Computing.

[8]  David Peleg,et al.  Labeling Schemes for Dynamic Tree Networks , 2002, Theory of Computing Systems.

[9]  David Peleg,et al.  Labeling Schemes for Weighted Dynamic Trees , 2003, ICALP.

[10]  Celina M. H. de Figueiredo,et al.  A Linear-Time Algorithm for Proper Interval Graph Recognition , 1995, Inf. Process. Lett..

[11]  Thomas Mueller The Probability of an Interval Graph, and Why It Matters , 1979 .

[12]  Peter L. Hammer,et al.  Difference graphs , 1990, Discret. Appl. Math..

[13]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[14]  Mikkel Thorup Compact oracles for reachability and approximate distances in planar digraphs , 2004, JACM.

[15]  Ben Dushnik,et al.  Partially Ordered Sets , 1941 .

[16]  David Peleg,et al.  Distance labeling schemes for well-separated graph classes , 2000, Discret. Appl. Math..

[17]  Amos Korman General Compact Labeling Schemes for Dynamic Trees , 2005, DISC.

[18]  David Peleg Informative Labeling Schemes for Graphs , 2000, MFCS.

[19]  Moni Naor,et al.  Implicit Representation of Graphs , 1992, SIAM J. Discret. Math..

[20]  Ran Raz,et al.  Distance labeling in graphs , 2001, SODA '01.

[21]  P. Hanlon Counting interval graphs , 1982 .

[22]  Stephan Olariu,et al.  Simple Linear Time Recognition of Unit Interval Graphs , 1995, Inf. Process. Lett..

[23]  Bruno Courcelle,et al.  Query efficient implementation of graphs of bounded clique-width , 2003, Discret. Appl. Math..

[24]  F. Chung Universal graphs and induced-universal graphs , 1990 .

[25]  Jørgen Bang-Jensen,et al.  Local Tournaments and Proper Circular Arc Gaphs , 1990, SIGAL International Symposium on Algorithms.

[26]  D. Peleg Proximity-preserving labeling schemes , 2000, J. Graph Theory.

[27]  Aleksandrs Slivkins Distance estimation and object location via rings of neighbors , 2006, Distributed Computing.

[28]  D. T. Lee,et al.  Solving the all-pair shortest path query problem on interval and circular-arc graphs , 1998, Networks.

[29]  Stephen Alstrup,et al.  Improved labeling scheme for ancestor queries , 2002, SODA '02.

[30]  Uzi Vishkin,et al.  Finding Level-Ancestors in Trees , 1994, J. Comput. Syst. Sci..

[31]  Cyril Gavoille,et al.  Distance labeling scheme and split decomposition , 2003, Discret. Math..

[32]  Jeremy P. Spinrad,et al.  Efficient graph representations , 2003, Fields Institute monographs.

[33]  David Peleg,et al.  Distance labeling schemes for well-separated graph classes , 2005, Discret. Appl. Math..