The shape of spherical quartics

We discuss the problem of interpolating C1 Hermite data on the sphere (two points with associated first derivative vectors) by spherical rational curves. With the help of the generalized stereographic projection (Dietz et al., 1993), we construct a two-parameter family of spherical quartics solving this problem. We study the shape of these solutions and derive criteria which guarantee solutions without cusps or self-intersections.

[1]  Anton Gfrerrer,et al.  Rational interpolation on a hypersphere , 1999, Comput. Aided Geom. Des..

[2]  P. Jupp,et al.  Fitting Smooth Paths to Spherical Data , 1987 .

[3]  Rida T. Farouki,et al.  Hermite Interpolation by Rotation-Invariant Spatial Pythagorean-Hodograph Curves , 2002, Adv. Comput. Math..

[4]  Otto Röschel,et al.  Rational motion design - a survey , 1998, Comput. Aided Des..

[5]  Barry Joe,et al.  Interpolation on quadric surfaces with rational quadratic spline curves , 1997, Comput. Aided Geom. Des..

[6]  Myung-Soo Kim,et al.  Interpolating solid orientations with circular blending quaternion curves , 1995, Comput. Aided Des..

[7]  Hwan Pyo Moon,et al.  Clifford Algebra, Spin Representation, and Rational Parameterization of Curves and Surfaces , 2002, Adv. Comput. Math..

[8]  Fujio Yamaguchi,et al.  Computer-Aided Geometric Design , 2002, Springer Japan.

[9]  Daniel Pletinckx,et al.  Quaternion calculus as a basic tool in computer graphics , 2005, The Visual Computer.

[10]  Bert Jüttler,et al.  An algebraic approach to curves and surfaces on the sphere and on other quadrics , 1993, Comput. Aided Geom. Des..

[11]  Rida T. Farouki,et al.  Pythagorean-Hodograph Curves , 2002, Handbook of Computer Aided Geometric Design.

[12]  Bert Jüttler,et al.  Kinematics and Animation , 2002, Handbook of Computer Aided Geometric Design.

[13]  B. Joe,et al.  Orientation interpolation in quaternion space using spherical biarcs , 1993 .

[14]  Sung Yong Shin,et al.  A general construction scheme for unit quaternion curves with simple high order derivatives , 1995, SIGGRAPH.

[15]  Lyle Noakes,et al.  Nonlinear corner‐cutting , 1998, Adv. Comput. Math..

[16]  L. Dickson History of the Theory of Numbers , 1924, Nature.

[17]  Josef Hoschek,et al.  Handbook of Computer Aided Geometric Design , 2002 .

[18]  Ken Shoemake,et al.  Animating rotation with quaternion curves , 1985, SIGGRAPH.