Dispersion-managed breathing-mode semiconductor mode-locked ring laser: experimental and numerical study

A novel dispersion-managed breathing-mode mode-locked semiconductor ring laser is studied. The working regime and pulse evolution at the key cavity points are experimentally characterized and numerically simulated. Linearly chirped, asymmetric exponential pulses are generated, suitable for external amplification and compression. The pulses are externally compressed to duration as short as 274 fs, which is within 10% of the bandwidth limit. The close agreement between the simulated and the measured results verifies our ability to control the physical mechanisms involved in pulse formation and shaping within the ring cavity.

[1]  P. Delfyett,et al.  Time- and spectrally resolved ultrafast gain dynamics of a semiconductor optical amplifier under phase-correlated multiwavelength pulse amplification , 2004 .

[2]  B. Resan,et al.  Dispersion-managed breathing-mode semiconductor mode-locked ring laser: experimental characterization and numerical simulations , 2004, IEEE Journal of Quantum Electronics.

[3]  Benn C. Thomsen,et al.  Complete characterization of ultrashort pulse sources at 1550 nm , 1999 .

[4]  Xinyong Dong,et al.  A largely tunable CFBG-based dispersion compensator with fixed center wavelength. , 2003, Optics express.

[5]  Ci-Ling Pan,et al.  Sub femto-joule sensitive single-shot OPA-XFROG and its application in study of white-light supercontinuum generation. , 2004, Optics express.

[6]  David J. Hagan,et al.  New Two-Photon Absorbing Fluorene Derivatives: Synthesis and Nonlinear Optical Characterization , 1999 .

[7]  P. So,et al.  Prospects of nonlinear microscopy in the next decade: an overview. , 1998, Optics express.

[8]  H. Telle,et al.  Complex intensity modulation transfer function for supercontinuum generation in microstructure fibers. , 2004, Optics express.

[9]  F. Kärtner,et al.  Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers , 1996 .

[10]  Alfred Leitenstorfer,et al.  Widely tunable sub-30-fs pulses from a compact erbium-doped fiber source. , 2004, Optics letters.

[11]  C. Kurtzke,et al.  Suppression of fiber nonlinearities by appropriate dispersion management , 1993, IEEE Photonics Technology Letters.

[12]  Peter J. Delfyett Compact sources of ultrashort pulses: High power ultrafast semiconductor injection diode lasers , 1995 .

[13]  P. J. Delfyett,et al.  Femtosecond hybrid mode-locked semiconductor laser and amplifier dynamics , 1994 .

[14]  G. Alphonse,et al.  168 channels x 6 GHz from a multiwavelength mode-locked semiconductor laser , 2003, IEEE Photonics Technology Letters.

[15]  Lawrence Shah,et al.  Laser ablation threshold and etch rate comparison between the ultrafast Yb fiber-based FCPA laser and a Ti:sapphire laser for various materials , 2004, International Symposium on Laser Precision Microfabrication.

[16]  Wei-Ping Huang,et al.  Design of photonic crystal fibers for dispersion-related applications , 2003 .

[17]  J. Lourtioz,et al.  Nonlinear chirp compensation in high-power broad-spectrum pulses from single-stripe mode-locked laser diodes , 1995 .

[18]  J W Nicholson,et al.  Full-field characterization of femtosecond pulses by spectrum and cross-correlation measurements. , 1999, Optics letters.

[19]  H. Haus,et al.  Dispersion-managed solitons in the net positive dispersion regime , 1999 .

[20]  R. Alfano,et al.  Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses , 1970 .

[21]  Jun Ye,et al.  Orthogonal control of the frequency comb dynamics of a mode-locked laser diode. , 2003, Optics letters.

[22]  Simulation of the frequency behavior of external-cavity semiconductor lasers , 2003 .

[23]  H. Haus,et al.  Dispersion-managed solitons as nonlinear Bloch waves , 1999 .

[24]  A. Yariv,et al.  Broader, flatter optical spectra of passively mode-locked semiconductor lasers for a wavelength-division multiplexing source. , 1997, Applied optics.

[25]  Hermann A. Haus,et al.  Theory of modelocking of a laser diode in an external resonator , 1980 .

[26]  James P. Gordon,et al.  Theory of passively mode-locked lasers for the case of a nonlinear complex-propagation coefficient , 1985 .

[27]  N. Olsson,et al.  Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers , 1989 .

[28]  Bianca E. N. Keeler Wavelength division multiplexed optical interconnects using short pulses , 2003 .

[29]  J. Fujimoto,et al.  Real-time, ultrahigh-resolution optical coherence tomography at 1.5 µm using a femtosecond fiber laser continuum , 2004 .

[30]  Peter J. Delfyett,et al.  Femtosecond self- and cross-phase modulation in semiconductor laser amplifiers , 1996 .

[31]  David A. B. Miller,et al.  The benefits of ultrashort optical pulses in optically interconnected systems , 2003 .

[32]  Patrick D. O'Shea,et al.  Highly simplified device for ultrashort-pulse measurement. , 2001, Optics letters.

[33]  Chun-Kit Chan,et al.  Analysis of performance optimization in supercontinuum sources. , 2004, Optics letters.

[34]  D. Miller,et al.  Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures , 1984 .

[35]  Matthew E. Grein,et al.  Recovery dynamics in proton-bombarded semiconductor saturable absorber mirrors , 2001 .

[36]  F. M. Knox,et al.  Stable soliton-like propagation in dispersion managed systems with net anomalous, zero and normal dispersion , 1997 .

[37]  P.J. Delfyett,et al.  Pulsed injection locking dynamics of passively mode-locked external-cavity semiconductor laser systems for all-optical clock recovery , 2000, Journal of Lightwave Technology.

[38]  Hiroshi Ito,et al.  Recovery of 40 GHz optical clock from 160 Gbit/s data using regeneratively modelocked semiconductor laser , 2003 .

[39]  V. Couderc,et al.  High-energy femtosecond pulses from an ytterbium-doped fiber laser with a new cavity design , 2004, IEEE Photonics Technology Letters.

[40]  C. Shu,et al.  Switching-wavelength pulse source constructed from a dispersion-managed SOA fiber ring laser , 2003, IEEE Photonics Technology Letters.

[41]  J. Leegwater Theory of mode-locked semiconductor lasers , 1996 .

[42]  I Hartl,et al.  Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd:Glass laser and nonlinear fiber. , 2003, Optics express.

[43]  M. Jablonski,et al.  Laser mode locking using a saturable absorber incorporating carbon nanotubes , 2004, Journal of Lightwave Technology.

[44]  C. D. de Matos,et al.  Multi-kilowatt, all-fiber integrated chirped-pulse amplification system yielding 40x pulse compression using air-core fiber and conventional erbium-doped fiber amplifier. , 2004, Optics express.

[45]  Y. Zou,et al.  Low-threshold-current-density 1.5 mu m lasers using compressively strained InGaAsP quantum wells , 1992, IEEE Photonics Technology Letters.

[46]  A. Weiner,et al.  Ambiguity of ultrashort pulse shapes retrieved from the intensity autocorrelation and the power spectrum , 2001 .

[47]  D. Kane,et al.  Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating , 1993 .

[48]  John C. Connolly,et al.  Intracavity Gain and Absorption Dynamics of Hybrid Modelocked Semiconductor Lasers using Multiple Quantum Well Saturable Absorbers , 1997 .

[49]  L. Boivin,et al.  110 channels x 2.35 Gb/s from a single femtosecond laser , 1999, IEEE Photonics Technology Letters.

[50]  W. Sibbett,et al.  Amplification of femtosecond pulses over by 18 dB in a quantum-dot semiconductor optical amplifier , 2003, IEEE Photonics Technology Letters.

[51]  Jean-Claude Diels,et al.  Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale , 1996 .

[52]  R. Koumans,et al.  eory for Passive ode-Locking in Laser Structures Including the Effects of Se odulation, ispersion, and Pulse C , 1996 .

[53]  Bojan Resan,et al.  Dispersion managed semiconductor mode-locked ring laser , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[54]  T. Yilmaz,et al.  High-quality photonic sampling streams from a semiconductor diode ring laser , 2002 .

[55]  P. W. Smith,et al.  Passive mode locking of a semiconductor diode laser. , 1984, Optics letters.

[56]  D. Pureur,et al.  A tunable four-channel fiber Bragg grating dispersion compensator , 2003, IEEE Photonics Technology Letters.

[57]  Martin Schell,et al.  Chirp and stability of mode-locked semiconductor lasers , 1996 .

[58]  J W Nicholson,et al.  Unbalanced third-order correlations for full characterization of femtosecond pulses. , 2000, Optics letters.

[59]  R. Buczyński Photonic Crystal Fibers , 2004 .

[60]  Peter J. Delfyett,et al.  High-power ultrafast laser diodes , 1992 .

[61]  R. Ludwig,et al.  Mode-locked semiconductor lasers and their applications for optical signal processing , 1999 .

[62]  Marcos Dantus,et al.  Selective two-photon microscopy with shaped femtosecond pulses. , 2003, Optics express.

[63]  Klaus Mølmer,et al.  Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths. , 2004, Optics express.

[64]  Hiroshi Okamoto,et al.  Large optical nonlinearity and fast response time in low-temperature grown GaAs/AlAs multiple quantum wells , 2000 .

[65]  F.W. Wise,et al.  Generation of 36-femtosecond pulses from a ytterbium fiber laser , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[66]  J. Gordon,et al.  Theory of passively mode-locked lasers including self-phase modulation and group-velocity dispersion. , 1984, Optics letters.

[67]  P. Delfyett,et al.  External-cavity, actively mode-locked grating-coupled surface-emitting laser and amplification characteristics of a grating-coupled semiconductor optical amplifier. , 2004, Optics letters.

[68]  James G. Fujimoto,et al.  Dispersion-managed mode locking , 1999 .

[69]  FROG measured 185 fs pulses generated by down-chirped dispersion-managed breathing-mode semiconductor laser , 2005 .

[70]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[71]  R. Trebino Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses , 2000 .

[72]  C. Headley,et al.  Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers , 2003 .

[73]  Ali M. Darwish,et al.  Subpicosecond gain and index nonlinearities in InGaAsP diode lasers , 1994 .

[74]  Downer,et al.  Femtosecond dynamics of resonantly excited excitons in room-temperature GaAs quantum wells. , 1985, Physical review letters.

[75]  Yaron Silberberg,et al.  Theory of mode locking of a laser diode with a multiple-quantum-well structure , 1985 .

[76]  M. Yan,et al.  Cross-coherence measurements of supercontinua generated in highly-nonlinear, dispersion shifted fiber at 1550 nm. , 2004, Optics express.

[77]  H. Haus Theory of mode locking with a slow saturable absorber , 1975 .

[78]  G. Alphonse,et al.  Multiwavelength 10-GHz picosecond pulse generation from a single-stripe semiconductor diode laser , 1997, IEEE Photonics Technology Letters.

[79]  Robert R. Alfano,et al.  The Supercontinuum Laser Source , 1989 .

[80]  J. W. Nicholson,et al.  Noise sensitivity and accuracy of femtosecond pulse retrieval by phase and intensity from correlation and spectrum only (PICASO) , 2002 .

[81]  J. Lourtioz,et al.  Passive modelocking of semiconductor lasers with tunable group velocity dispersion cavity , 1993 .

[82]  A. Siegman,et al.  FM and AM mode locking of the homogeneous laser - Part I: Theory , 1970 .

[83]  David A. B. Miller,et al.  Mode locking of semiconductor diode lasers using saturable excitonic nonlinearities , 1985 .

[84]  E. Treacy Optical pulse compression with diffraction gratings , 1969 .