Using MCL to extract clusters from networks.

MCL is a general purpose cluster algorithm for both weighted and unweighted networks. The algorithm utilises network topology as well as edge weights, is highly scalable and has been applied in a wide variety of bioinformatic methods. In this chapter, we give protocols and case studies for clustering of networks derived from, respectively, protein sequence similarities and gene expression profile correlations.

[1]  Igor Jurisica,et al.  Protein complex prediction via cost-based clustering , 2004, Bioinform..

[2]  Julio Collado-Vides,et al.  RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation , 2007, Nucleic Acids Res..

[3]  Yves Deville,et al.  NeAT: a toolbox for the analysis of biological networks, clusters, classes and pathways , 2008, Nucleic Acids Res..

[4]  J. Westberg,et al.  Intracellular pathogens go extreme: genome evolution in the Rickettsiales. , 2007, Trends in genetics : TIG.

[5]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[6]  ro Jorge Serment-Guerrero,et al.  The SOS response of Escherichia coli , 2005 .

[7]  Lefteris Angelis,et al.  PuReD-MCL: a graph-based PubMed document clustering methodology , 2008, Bioinform..

[8]  S. vanDongen Graph Clustering by Flow Simulation , 2000 .

[9]  S. vanDongen Performance criteria for graph clustering and Markov cluster experiments , 2000 .

[10]  Anton J. Enright,et al.  Detection of functional modules from protein interaction networks , 2003, Proteins.

[11]  Stijn van Dongen,et al.  Construction, Visualisation, and Clustering of Transcription Networks from Microarray Expression Data , 2007, PLoS Comput. Biol..

[12]  Anton J. Enright,et al.  An efficient algorithm for large-scale detection of protein families. , 2002, Nucleic acids research.

[13]  Stijn van Dongen,et al.  GeneMCL in microarray analysis , 2005, Comput. Biol. Chem..

[14]  Anton J. Enright,et al.  Protein families and TRIBES in genome sequence space. , 2003, Nucleic acids research.

[15]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[16]  D Raoult,et al.  Selfish DNA in protein-coding genes of Rickettsia. , 2000, Science.

[17]  Cathy H. Wu,et al.  The Universal Protein Resource (UniProt) , 2006, Nucleic Acids Research.

[18]  Samuel Granjeaud,et al.  TranscriptomeBrowser: A Powerful and Flexible Toolbox to Explore Productively the Transcriptional Landscape of the Gene Expression Omnibus Database , 2008, PloS one.

[19]  The UniProt Consortium,et al.  The Universal Protein Resource (UniProt) 2009 , 2008, Nucleic Acids Res..

[20]  Anton J. Enright,et al.  Network visualization and analysis of gene expression data using BioLayout Express3D , 2009, Nature Protocols.

[21]  B. Snel,et al.  Predicting gene function by conserved co-expression. , 2003, Trends in genetics : TIG.

[22]  Jeremiah J. Faith,et al.  Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata , 2007, Nucleic Acids Res..

[23]  Patrik D'haeseleer,et al.  How does gene expression clustering work? , 2005, Nature Biotechnology.

[24]  Peter D. Karp,et al.  EcoCyc: A comprehensive view of Escherichia coli biology , 2008, Nucleic Acids Res..

[25]  Jacques van Helden,et al.  Evaluation of clustering algorithms for protein-protein interaction networks , 2006, BMC Bioinformatics.

[26]  Stijn van Dongen,et al.  Graph Clustering Via a Discrete Uncoupling Process , 2008, SIAM J. Matrix Anal. Appl..

[27]  S. Dongen A cluster algorithm for graphs , 2000 .