Kernel Topic Models

Latent Dirichlet Allocation models discrete data as a mixture of discrete distributions, using Dirichlet beliefs over the mixture weights. We study a variation of this concept, in which the documents’ mixture weight beliefs are replaced with squashed Gaussian distributions. This allows documents to be associated with elements of a Hilbert space, admitting kernel topic models (KTM), modelling temporal, spatial, hierarchical, social and other structure between documents. The main challenge is efficient approximate inference on the latent Gaussian. We present an approximate algorithm cast around a Laplace approximation in a transformed basis. The KTM can also be interpreted as a type of Gaussian process latent variable model, or as a topic model conditional on document features, uncovering links between earlier work in these areas.

[1]  C. Elkan,et al.  Topic Models , 2008 .

[2]  Andrew McCallum,et al.  Topic Models Conditioned on Arbitrary Features with Dirichlet-multinomial Regression , 2008, UAI.

[3]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[4]  Neil D. Lawrence,et al.  Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data , 2003, NIPS.

[5]  John D. Lafferty,et al.  Dynamic topic models , 2006, ICML.

[6]  Andrew McCallum,et al.  Polylingual Topic Models , 2009, EMNLP.

[7]  John D. Lafferty,et al.  A correlated topic model of Science , 2007, 0708.3601.

[8]  Mark Steyvers,et al.  Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Ryan P. Adams,et al.  Elliptical slice sampling , 2009, AISTATS.

[10]  Francis R. Bach,et al.  Online Learning for Latent Dirichlet Allocation , 2010, NIPS.

[11]  Yee Whye Teh,et al.  A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation , 2006, NIPS.

[12]  Gal Chechik,et al.  Euclidean Embedding of Co-occurrence Data , 2004, J. Mach. Learn. Res..

[13]  Thomas L. Griffiths,et al.  The Author-Topic Model for Authors and Documents , 2004, UAI.

[14]  David J. C. MacKay,et al.  Choice of Basis for Laplace Approximation , 1998, Machine Learning.

[15]  Chong Wang,et al.  Continuous Time Dynamic Topic Models , 2008, UAI.

[16]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[17]  Andrew McCallum,et al.  Topics over time: a non-Markov continuous-time model of topical trends , 2006, KDD '06.

[18]  Hal Daumé,et al.  Markov Random Topic Fields , 2009, ACL/IJCNLP.

[19]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[20]  David M. Blei,et al.  Relational Topic Models for Document Networks , 2009, AISTATS.

[21]  Eric P. Xing,et al.  Conditional Topic Random Fields , 2010, ICML.