Database Analysis of Simulated and Recorded Electrophysiological Datasets with PANDORA’s Toolbox

Neuronal recordings and computer simulations produce ever growing amounts of data, impeding conventional analysis methods from keeping pace. Such large datasets can be automatically analyzed by taking advantage of the well-established relational database paradigm. Raw electrophysiology data can be entered into a database by extracting its interesting characteristics (e.g., firing rate). Compared to storing the raw data directly, this database representation is several orders of magnitude higher efficient in storage space and processing time. Using two large electrophysiology recording and simulation datasets, we demonstrate that the database can be queried, transformed and analyzed. This process is relatively simple and easy to learn because it takes place entirely in Matlab, using our database analysis toolbox, PANDORA. It is capable of acquiring data from common recording and simulation platforms and exchanging data with external database engines and other analysis toolboxes, which make analysis simpler and highly interoperable. PANDORA is available to be freely used and modified because it is open-source (http://software.incf.org/software/pandora/home).

[1]  Perry L. Miller,et al.  The Human Brain Project: neuroinformatics tools for integrating, searching and modeling multidisciplinary neuroscience data , 1998, Trends in Neurosciences.

[2]  Cengiz Günay,et al.  Computational Intelligence in Electrophysiology: Trends and Open Problems , 2008, Applications of Computational Intelligence in Biology.

[3]  Prinz A.A Calcium sensor properties for activity-dependent homeostatic regulation of pyloric network rhythms in the lobster stomatogastric ganglion , 2008 .

[4]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[5]  Don H. Johnson,et al.  Toward a theory of information processing , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[6]  Donald D. Chamberlin,et al.  SEQUEL: A structured English query language , 1974, SIGFIDET '74.

[7]  E. Marder,et al.  A Model Neuron with Activity-Dependent Conductances Regulated by Multiple Calcium Sensors , 1998, The Journal of Neuroscience.

[8]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[9]  Malcolm Lidierth,et al.  sigTOOL: A MATLAB-based environment for sharing laboratory-developed software to analyze biological signals , 2009, Journal of Neuroscience Methods.

[10]  Ramez Elmasri,et al.  Fundamentals of database systems (2nd ed.) , 1994 .

[11]  J. A. Bewer The Book of Genesis , 2011 .

[12]  Jie Cui,et al.  2008 Special Issue: BSMART: A Matlab/C toolbox for analysis of multichannel neural time series , 2008 .

[13]  R. Angus Silver,et al.  neuroConstruct: A Tool for Modeling Networks of Neurons in 3D Space , 2007, Neuron.

[14]  Ramez Elmasri,et al.  Fundamentals of Database Systems , 1989 .

[15]  Eve Marder,et al.  Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. , 2003, Journal of neurophysiology.

[16]  Jan G. Bjaalie,et al.  Understanding the Brain through Neuroinformatics , 2008, Front. Neurosci..

[17]  Robert J. Butera,et al.  Estimating action potential thresholds from neuronal time-series: new metrics and evaluation of methodologies , 2004, IEEE Transactions on Biomedical Engineering.

[18]  Susan L. Wearne,et al.  The role of action potential shape and parameter constraints in optimization of compartment models , 2006, Neurocomputing.

[19]  F. E. A Relational Model of Data Large Shared Data Banks , 2000 .

[20]  James M. Bower,et al.  A Comparative Survey of Automated Parameter-Search Methods for Compartmental Neural Models , 1999, Journal of Computational Neuroscience.

[21]  F. Salam Parameter space analysis and design of an adaptive system , 1986 .

[22]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[23]  Jerald D. Kralik,et al.  Chronic, multisite, multielectrode recordings in macaque monkeys , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Kevin N. Gurney,et al.  A novel parameter optimisation technique for compartmental models applied to a model of a striatal medium spiny neuron , 2004, Neurocomputing.

[25]  Liam Paninski,et al.  Efficient estimation of detailed single-neuron models. , 2006, Journal of neurophysiology.

[26]  Martin P. Nawrot,et al.  G-Node: an integrated tool-sharing platform to support cellular and systems neurophysiology in the age of global neuroinformatics. , 2008, Neural networks : the official journal of the International Neural Network Society.

[27]  Thomas M. Morse Model sharing in computational neuroscience , 2007, Scholarpedia.

[28]  Anders M. Dale,et al.  Towards effective and rewarding data sharing , 2003, Neuroinformatics.

[29]  Nicholas T. Carnevale,et al.  The NEURON Book: Epilogue , 2006 .

[30]  Astrid A. Prinz,et al.  Hybridization of Rough Setsand Multi-ObjectiveEvolutionary Algorithms forClassificatory SignalDecomposition , 2008 .

[31]  Cengiz Günay,et al.  Channel Density Distributions Explain Spiking Variability in the Globus Pallidus: A Combined Physiology and Computer Simulation Database Approach , 2008, The Journal of Neuroscience.

[32]  Sandy Pittendrigh,et al.  Neurosys - A semistructured laboratory database , 2003, Neuroinformatics.

[33]  E. Marder,et al.  Similar network activity from disparate circuit parameters , 2004, Nature Neuroscience.

[34]  Robert J Calin-Jageman,et al.  Parameter space analysis suggests multi-site plasticity contributes to motor pattern initiation in Tritonia. , 2007, Journal of neurophysiology.

[35]  B. Bean The action potential in mammalian central neurons , 2007, Nature Reviews Neuroscience.

[36]  Erik De Schutter,et al.  Automated neuron model optimization techniques: a review , 2008, Biological Cybernetics.

[37]  J. Ivey,et al.  Ann Arbor, Michigan , 1969 .

[38]  Ad Aertsen,et al.  FIND - A unified framework for neural data analysis , 2008, Neural Networks.

[39]  Michael L. Hines,et al.  Interoperability of Neuroscience Modeling Software: Current Status and Future Directions , 2007, Neuroinformatics.

[40]  Nicholas T. Carnevale,et al.  ModelDB: A Database to Support Computational Neuroscience , 2004, Journal of Computational Neuroscience.

[41]  Don H. Johnson,et al.  Symmetrizing the Kullback-Leibler Distance , 2001 .

[42]  Erik De Schutter,et al.  Complex Parameter Landscape for a Complex Neuron Model , 2006, PLoS Comput. Biol..

[43]  E. F. CODD,et al.  A relational model of data for large shared data banks , 1970, CACM.

[44]  William W Lytton,et al.  Neural query system , 2007, Neuroinformatics.

[45]  R. Kass,et al.  Multiple neural spike train data analysis: state-of-the-art and future challenges , 2004, Nature Neuroscience.

[46]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[47]  Jacquelyn S. Fetrow,et al.  Scientific Software Development Is Not an Oxymoron , 2006, PLoS Comput. Biol..

[48]  Eve Marder,et al.  Structure and visualization of high-dimensional conductance spaces. , 2006, Journal of neurophysiology.

[49]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[50]  Hans-Michael Müller,et al.  The Neuroscience Information Framework: A Data and Knowledge Environment for Neuroscience , 2008, Neuroinformatics.

[51]  J. Bower,et al.  The Book of GENESIS , 1998, Springer New York.

[52]  Sten Grillner,et al.  Global Neuroinformatics: The International Neuroinformatics Coordinating Facility , 2007, The Journal of Neuroscience.