One-phase Free Boundary Problems on RCD Metric Measure Spaces

In this paper, we consider a vector-valued one phase Bernoullitype free boundary problem on a metric measure space (X, d, μ) with Riemannian curvature-dimension condition RCD(K,N). We first prove the existence and the local Lipschitz regularity of the solutions, provided the space X is non collapsed, i.e. μ is the N-dimensional Hausdorff measure of X. And then we show that the free boundary of the solutions is an (N − 1)-dimensional topological manifold away from a relatively closed subset of Hausdorff dimension 6 N − 3.

[1]  N. Shanmugalingam,et al.  Regularity of quasi-minimizers on metric spaces , 2001 .

[2]  Anton Petrunin,et al.  Alexandrov meets Lott-Villani-Sturm , 2010, 1003.5948.

[3]  L. Caffarelli,et al.  A minimization problem with free boundary related to a cooperative system , 2016, Duke Mathematical Journal.

[4]  L. Simon Regularity Theory for Harmonic Maps , 1996 .

[5]  Henrik Shahgholian,et al.  An overview of unconstrained free boundary problems , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  G. Weiss Partial regularity for a minimum problem with free boundary , 1999 .

[7]  Leon Simon,et al.  Theorems on Regularity and Singularity of Energy Minimizing Maps , 1996 .

[8]  Max Engelstein,et al.  Quantitative stratification for some free-boundary problems , 2017, Transactions of the American Mathematical Society.

[9]  A. Friedman,et al.  Compressible flows of jets and cavities , 1984 .

[10]  S. Salsa,et al.  Recent progresses on elliptic two-phase free boundary problems , 2019, Discrete & Continuous Dynamical Systems - A.

[11]  Avner Friedman,et al.  Variational problems with two phases and their free boundaries , 1984 .

[12]  D. Jerison,et al.  Some remarks on stability of cones for the one-phase free boundary problem , 2014, 1410.7463.

[13]  A. Naber,et al.  Rectifiable-Reifenberg and the Regularity of Stationary and Minimizing Harmonic Maps , 2015, 1504.02043.

[14]  A. Mondino,et al.  On the topology and the boundary of N–dimensional RCD(K,N) spaces , 2019, Geometry & Topology.

[15]  Jeff Cheeger,et al.  On the structure of spaces with Ricci curvature bounded below. II , 2000 .

[16]  L. Ambrosio,et al.  Metric measure spaces with Riemannian Ricci curvature bounded from below , 2011, 1109.0222.

[17]  R. Schoen,et al.  Harmonic maps into singular spaces andp-adic superrigidity for lattices in groups of rank one , 1992 .

[18]  D. Jerison,et al.  A singular energy minimizing free boundary , 2009 .

[19]  Luigi Ambrosio,et al.  Some Fine Properties of Sets of Finite Perimeter in Ahlfors Regular Metric Measure Spaces , 2001 .

[20]  Karen Uhlenbeck,et al.  A regularity theory for harmonic maps , 1982 .

[21]  A. Mondino,et al.  Structure theory of metric measure spaces with lower Ricci curvature bounds , 2014, Journal of the European Mathematical Society.

[22]  Jimmy Lamboley,et al.  Existence and regularity of Faber-Krahn minimizers in a Riemannian manifold , 2019, Journal de Mathématiques Pures et Appliquées.

[23]  L. Ambrosio CALCULUS, HEAT FLOW AND CURVATURE-DIMENSION BOUNDS IN METRIC MEASURE SPACES , 2019, Proceedings of the International Congress of Mathematicians (ICM 2018).

[24]  A. Naber,et al.  Boundary regularity and stability for spaces with Ricci bounded below , 2020, Inventiones mathematicae.

[25]  Enrico Pasqualetto,et al.  Rectifiability of the reduced boundary for sets of finite perimeter over $\RCD(K,N)$ spaces. , 2019, 1909.00381.

[26]  G. Philippis,et al.  Non-collapsed spaces with Ricci curvature bounded from below , 2017, 1708.02060.

[27]  S. Terracini,et al.  Regularity of the free boundary for the vectorial Bernoulli problem , 2018, 1804.09243.

[28]  Sajjad Lakzian,et al.  Characterization of Low Dimensional RCD*(K, N) Spaces , 2015, 1505.00420.

[29]  A. Mondino,et al.  Convergence of pointed non‐compact metric measure spaces and stability of Ricci curvature bounds and heat flows , 2013, 1311.4907.

[30]  A. Figalli REGULARITY OF INTERFACES IN PHASE TRANSITIONS VIA OBSTACLE PROBLEMS - FIELDS MEDAL LECTURE , 2018, Proceedings of the International Congress of Mathematicians (ICM 2018).

[31]  F. Ferrari,et al.  Free boundary regularity for fully nonlinear non-homogeneous two-phase problems , 2013, 1304.0406.

[32]  C. Villani,et al.  Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.

[33]  Cheeger,et al.  Rectifiability of singular sets of noncollapsed limit spaces with Ricci curvature bounded below , 2021 .

[34]  Isoperimetric inequality via Lipschitz regularity of Cheeger-harmonic functions , 2014 .

[35]  David Kinderlehrer,et al.  Analyticity at the boundary of solutions of nonlinear second‐order parabolic equations , 1978 .

[36]  T. O’Neil Geometric Measure Theory , 2002 .

[37]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[38]  L. Caffarelli,et al.  Existence and regularity for a minimum problem with free boundary. , 1981 .

[39]  Emanuel Milman,et al.  The globalization theorem for the Curvature-Dimension condition , 2016, Inventiones mathematicae.

[40]  Jeff Cheeger,et al.  Differentiability of Lipschitz Functions on Metric Measure Spaces , 1999 .

[41]  Jean-Michel Roquejoffre,et al.  Variational problems with free boundaries for the fractional Laplacian , 2010 .

[42]  L. Ambrosio,et al.  On the Bakry-\'Emery condition, the gradient estimates and the Local-to-Global property of RCD*(K,N) metric measure spaces , 2013, 1309.4664.

[43]  L. Caffarelli A harnack inequality approach to the regularity of free boundaries , 1986 .

[44]  S. Terracini,et al.  Regularity of the optimal sets for some spectral functionals , 2016, 1609.01231.

[45]  Xiping Zhu,et al.  Ricci Curvature on Alexandrov spaces and Rigidity Theorems , 2009, 0912.3190.

[46]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces , 2006 .

[47]  Michele Miranda,et al.  Functions of bounded variation on “good” metric spaces , 2003 .

[48]  N. Shanmugalingam Newtonian spaces: An extension of Sobolev spaces to metric measure spaces , 2000 .

[49]  A. Luigi,et al.  Rigidity of the 1-Bakry–Émery Inequality and Sets of Finite Perimeter in RCD Spaces , 2018, Geometric and Functional Analysis.

[50]  Tero Mäkäläinen Nonlinear potential theory on metric spaces , 2008 .

[51]  Daniele Semola,et al.  Constancy of the Dimension for RCD(K,N) Spaces via Regularity of Lagrangian Flows , 2018, Communications on Pure and Applied Mathematics.

[52]  Pekka Koskela,et al.  Sobolev met Poincaré , 2000 .

[53]  Xiping Zhu,et al.  Lipschitz continuity of harmonic maps between Alexandrov spaces , 2013, 1311.1331.

[54]  Y. Otsu,et al.  The Riemannian structure of Alexandrov spaces , 1994 .

[55]  M. Allen,et al.  Free Boundaries on Two-Dimensional Cones , 2015 .

[56]  C. Kenig,et al.  Global energy minimizers for free boundary problems and full regularity in three dimensions , 2004 .

[57]  Weak curvature conditions and functional inequalities , 2005, math/0506481.

[58]  Gioacchino Antonelli,et al.  Volume Bounds for the Quantitative Singular Strata of Non Collapsed RCD Metric Measure Spaces , 2019, Analysis and Geometry in Metric Spaces.

[59]  Nicola Gigli,et al.  Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below , 2011, 1106.2090.

[60]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[61]  N. Gigli On the differential structure of metric measure spaces and applications , 2012, 1205.6622.

[62]  G. David,et al.  Regularity of almost minimizers with free boundary , 2013, 1306.2704.

[63]  Jeff Cheeger,et al.  Lower bounds on Ricci curvature and the almost rigidity of warped products , 1996 .

[64]  L. Caffarelli A Harnack inequality approach to the regularity of free boundaries part II: Flat free boundaries are Lipschitz , 1989 .

[65]  R. Schoen,et al.  Sobolev spaces and harmonic maps for metric space targets , 1993 .

[66]  O. Savin,et al.  Almost minimizers of the one-phase free boundary problem , 2019, Communications in Partial Differential Equations.

[67]  S. Yau,et al.  Differential equations on riemannian manifolds and their geometric applications , 1975 .

[68]  Dorin Bucur,et al.  Variational Methods in some Shape Optimization Problems , 2002 .

[69]  Bozhidar Velichkov,et al.  Rectifiability and almost everywhere uniqueness of the blow-up for the vectorial Bernoulli free boundaries , 2021, 2107.12485.

[71]  L. Ambrosio,et al.  Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. , 2011, 1111.3730.

[72]  F. Lin,et al.  Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries , 2008 .

[73]  Nicola Gigli,et al.  The splitting theorem in non-smooth context , 2013, 1302.5555.

[74]  C. Ketterer Cones over metric measure spaces and the maximal diameter theorem , 2013, 1311.1307.

[75]  G. David,et al.  Free boundary regularity for almost-minimizers , 2017, Advances in Mathematics.

[76]  T. Rajala Local Poincaré inequalities from stable curvature conditions on metric spaces , 2011, 1107.4842.

[77]  G. Philippis,et al.  From volume cone to metric cone in the nonsmooth setting , 2015, 1512.03113.

[78]  Baptiste Trey Regularity of optimal sets for some functional involving eigenvalues of an operator in divergence form. , 2020, 2001.06504.

[79]  Huabin Ge,et al.  Partial Regularity of Harmonic Maps From Alexandrov Spaces , 2019, International Mathematics Research Notices.

[80]  F. Lin,et al.  Regularity for Shape Optimizers: The Nondegenerate Case , 2016, 1609.02624.

[81]  L. Caffarelli,et al.  Minimal surfaces and free boundaries: Recent developments , 2019, Bulletin of the American Mathematical Society.