Parallel Algorithms for Large-Scale Stochastic Programming

Stochastic programs address decision problems under uncertainty in diverse fields. The need to account for many contingencies in practical applications leads to very large optimization programs. Efficient parallel algorithms that can exploit the capabilities of modern multiprocessor computers become imperative. This chapter surveys the state-of-the-art in parallel algorithms for stochastic programming. Algorithms are reviewed, classified and compared; their potential and limitations are discussed and promising research directions are pointed out. Qualitative comparisons are based on applicability, ease of implementation, robustness and reliability of each algorithm, while quantitative comparisons are based on the computational performance of algorithmic implementations on multiprocessor systems. Emphasis is placed on the capabilities of parallel algorithms to solve large-scale stochastic programs.

[1]  John M. Mulvey,et al.  A New Scenario Decomposition Method for Large-Scale Stochastic Optimization , 1995, Oper. Res..

[2]  Jery R. Stedinger,et al.  SOCRATES: A system for scheduling hydroelectric generation under uncertainty , 1995, Ann. Oper. Res..

[3]  M. V. F. Pereira,et al.  Multi-stage stochastic optimization applied to energy planning , 1991, Math. Program..

[4]  Elizabeth R. Jessup,et al.  Parallel Factorization of Structured Matrices Arising in Stochastic Programming , 1994, SIAM J. Optim..

[5]  Yuri Ermoliev,et al.  Stochastic programming, an introduction. Numerical techniques for stochastic optimization , 1988 .

[6]  George B. Dantzig,et al.  Planning under uncertainty using parallel computing , 1988 .

[7]  Donald Goldfarb,et al.  Exploiting special structure in a primal—dual path-following algorithm , 1993, Math. Program..

[8]  John R. Birge,et al.  A parallel implementation of the nested decomposition algorithm for multistage stochastic linear programs , 1996, Math. Program..

[9]  Horand I. Gassmann,et al.  Mslip: A computer code for the multistage stochastic linear programming problem , 1990, Math. Program..

[10]  John R. Birge,et al.  Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs , 1985, Oper. Res..

[11]  John M. Mulvey,et al.  An Extension of the DQA Algorithm to Convex Stochastic Programs , 1994, SIAM J. Optim..

[12]  Stavros A. Zenios,et al.  On the Scalability of Data-Parallel Decomposition Algorithms for Stochastic Programs , 1994, J. Parallel Distributed Comput..

[13]  John M. Mulvey,et al.  A diagonal quadratic approximation method for large scale linear programs , 1992, Oper. Res. Lett..

[14]  E. Beale ON MINIMIZING A CONVEX FUNCTION SUBJECT TO LINEAR INEQUALITIES , 1955 .

[15]  John M. Mulvey,et al.  Solving multistage stochastic networks: An application of scenario aggregation , 1991, Networks.

[16]  J. Mulvey,et al.  Stochastic network programming for financial planning problems , 1992 .

[17]  R. J-B. Wets,et al.  Large Scale Linear Programming Techniques , 1988 .

[18]  R. Wets,et al.  Designing approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse , 1986 .

[19]  Nils Jacob Berland Load Balancing in Hypercube Solution of Stochastic Optimization Problems , 1995, INFORMS J. Comput..

[20]  Martin R. Holmer,et al.  A stochastic programming model for money management , 1995 .

[21]  Robert J. Vanderbei,et al.  Symmetric indefinite systems for interior point methods , 1993, Math. Program..

[22]  Roger J.-B. Wets Large Scale Linear Programming Techniques in Stochastic Programming , 1984 .

[23]  George B. Dantzig,et al.  Parallel processors for planning under uncertainty , 1990 .

[24]  John R. Birge,et al.  Efficient solution of two-stage stochastic linear programs using interior point methods , 1992, Comput. Optim. Appl..

[25]  Stavros A. Zenios,et al.  Asset/liability management under uncertainty for fixed-income securities , 1995, Ann. Oper. Res..

[26]  R. Tyrrell Rockafellar,et al.  Scenarios and Policy Aggregation in Optimization Under Uncertainty , 1991, Math. Oper. Res..

[27]  Peter Kall,et al.  Stochastic Programming , 1995 .

[28]  Andrzej Ruszczynski,et al.  A regularized decomposition method for minimizing a sum of polyhedral functions , 1986, Math. Program..

[29]  Hercules Vladimirou,et al.  Computational assessment of distributed decomposition methods for stochastic linear programs , 1998, Eur. J. Oper. Res..

[30]  Roger J.-B. Wets,et al.  Stochastic programming, an Introduction , 1988 .

[31]  Stavros A. Zenios,et al.  Scalable Parallel Benders Decomposition for Stochastic Linear Programming , 1997, Parallel Comput..

[32]  Robert D. Doverspike,et al.  Network planning with random demand , 1994, Telecommun. Syst..

[33]  W. Ziemba,et al.  The Russell-Yasuda Kasai Model: An Asset/Liability Model for a Japanese Insurance Company Using Multistage Stochastic Programming , 1994 .

[34]  Nimrod Megiddo,et al.  A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems , 1991, Lecture Notes in Computer Science.

[35]  Julia L. Higle,et al.  Stochastic Decomposition: An Algorithm for Two-Stage Linear Programs with Recourse , 1991, Math. Oper. Res..

[36]  Stavros A. Zenios,et al.  Integrated Simulation and Optimization Models for Tracking Indices of Fixed-Income Securities , 1994, Oper. Res..

[37]  Stavros A. Zenios,et al.  Solving multistage stochastic network programs on massively parallel computers , 1996, Math. Program..

[38]  François V. Louveaux,et al.  A Solution Method for Multistage Stochastic Programs with Recourse with Application to an Energy Investment Problem , 1980, Oper. Res..

[39]  Andrzej Ruszczyński,et al.  Interior Point Methods in Stochastic Programming , 1993 .

[40]  Stavros A. Zenios,et al.  A Massively Parallel Algorithm for Nonlinear Stochastic Network Problems , 1993, Oper. Res..

[41]  Gerd Infanger,et al.  Monte Carlo (importance) sampling within a benders decomposition algorithm for stochastic linear programs , 1991, Ann. Oper. Res..

[42]  G. B. Dantzig,et al.  Solving stochastic linear programs on a Hypercube multicomputer. Technical report , 1991 .

[43]  Andrzej Ruszczyński,et al.  Regularized Decomposition of Stochastic Programs: Algorithmic Techniques and Numerical Results , 1993 .

[44]  Stavros A. Zenios,et al.  A Scalable Parallel Interior Point Algorithm for Stochastic Linear Programming and Robust Optimization , 1997, Comput. Optim. Appl..

[45]  R. Wets,et al.  L-SHAPED LINEAR PROGRAMS WITH APPLICATIONS TO OPTIMAL CONTROL AND STOCHASTIC PROGRAMMING. , 1969 .

[46]  Stavros A. Zenios,et al.  Nonlinear network optimization on a massively parallel connection machine , 1988 .

[47]  John M. Mulvey,et al.  Applying the progressive hedging algorithm to stochastic generalized networks , 1991, Ann. Oper. Res..

[48]  J. Birge,et al.  A multicut algorithm for two-stage stochastic linear programs , 1988 .

[49]  Peter Kall,et al.  Approximation Techniques in Stochastic Programming , 1988 .

[50]  Roger J.-B. Wets,et al.  Stochastic Optimization Models for Lake Eutrophication Management , 1988, Oper. Res..

[51]  J. Birge,et al.  Computing block-angular Karmarkar projections with applications to stochastic programming , 1988 .

[52]  Jonathan Eckstein,et al.  Stochastic dedication: designing fixed income portfolios using massively parallel Benders decomposition , 1993 .

[53]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[54]  K. A. Ariyawansa,et al.  Performance of a benchmark parallel implementation of the Van Slyke and Wets algorithm for two-stage stochastic programs on the Sequent/Balance , 1991, Concurr. Pract. Exp..

[55]  John M. Mulvey,et al.  Formulating Two-Stage Stochastic Programs for Interior Point Methods , 1991, Oper. Res..