Generalization of the Kantorovich Method of Dimensional Reduction
暂无分享,去创建一个
[1] P. Rabinowitz. Russian Numerical Analysis: Approximate Methods of Higher Analysis . L. V. Kantorovich and V. I. Krylov. Translated from the third Russian edition by Curtis D. Benster. Interscience, New York, 1959. xv + 681. $17. , 1961, Science.
[2] Deok-Soo Kim,et al. Representing the Voronoi diagram of a simple polygon using rational quadratic Bézier curves , 1995, Comput. Aided Des..
[3] Christoph Schwab,et al. On the posteriori estimation of the modeling error for the heat conduction in a plate and its use for adaptive hierarchical modeling , 1994 .
[4] Alla Sheffer,et al. Hexahedral Mesh Generation Using Voronoi Skeletons , 1998, IMR.
[5] Hao Chen,et al. An accelerated triangulation method for computing the skeletons of free-form solid models , 1997, Comput. Aided Des..
[6] Walter D. Pilkey,et al. Analysis and Design of Elastic Beams: Computational Methods , 2003 .
[7] Vijay Srinivasan,et al. Voronoi Diagram for Multiply-Connected Polygonal Domains I: Algorithm , 1987, IBM J. Res. Dev..
[8] Christoph M. Hoffmann,et al. How to Construct the Skeleton of CSG Objects , 1990 .
[9] Siavash N. Meshkat,et al. Voronoi Diagram for Multiply-Connected Polygonal Domains II: Implementation and Application , 1987, IBM J. Res. Dev..
[10] Lee R. Nackman,et al. Curvature relations in three-dimensional symmetric axes , 1982, Comput. Graph. Image Process..
[11] M. Sabin,et al. Hexahedral mesh generation by medial surface subdivision: Part I. Solids with convex edges , 1995 .
[12] Cecil G. Armstrong,et al. Coupling 1D Beams to 3D Bodies , 1998, IMR.
[13] H. Schönheinz. G. Strang / G. J. Fix, An Analysis of the Finite Element Method. (Series in Automatic Computation. XIV + 306 S. m. Fig. Englewood Clifs, N. J. 1973. Prentice‐Hall, Inc. , 1975 .
[14] Nicholas M. Patrikalakis,et al. Differential and Topological Properties of Medial Axis Transforms , 1996, CVGIP Graph. Model. Image Process..
[15] Ari Rappoport,et al. Computing Voronoi skeletons of a 3-D polyhedron by space subdivision , 2002, Comput. Geom..
[16] K. A. Semendyayev,et al. Handbook of mathematics , 1985 .
[17] Mohsen Rezayat,et al. Midsurface abstraction from 3D solid models: general theory, applications , 1996, Comput. Aided Des..
[18] B. Gurumoorthy,et al. Constructing medial axis transform of planar domains with curved boundaries , 2003, Comput. Aided Des..
[19] Nickolas S. Sapidis,et al. Domain Delaunay Tetrahedrization of arbitrarily shaped curved polyhedra defined in a solid modeling system , 1991, SMA '91.
[20] HARRY BLUM,et al. Shape description using weighted symmetric axis features , 1978, Pattern Recognit..
[21] Clive L. Dym,et al. Energy and Finite Element Methods In Structural Mechanics : SI Units , 2017 .
[22] G. Strang,et al. An Analysis of the Finite Element Method , 1974 .
[23] I. Babuska,et al. On a dimensional reduction method. I. The optimal selection of basis functions , 1981 .
[24] W. E. Hartnett,et al. Shape Recognition, Prairie Fires, Convex Deficiencies and Skeletons , 1968 .
[25] Cecil G. Armstrong,et al. Mixed Dimensional Coupling in Finite Element Stress Analysis , 2002, Engineering with Computers.
[26] T. Tam,et al. 2D finite element mesh generation by medial axis subdivision , 1991 .
[27] E. Reissner,et al. Reflections on the Theory of Elastic Plates , 1985 .
[28] L. Kantorovich,et al. Approximate methods of higher analysis , 1960 .
[29] Ari Rappoport,et al. Computing the Voronoi diagram of a 3-D polyhedron by separate computation of its symbolic and geometric parts , 1999, SMA '99.
[30] Hwan Pyo Moon,et al. MATHEMATICAL THEORY OF MEDIAL AXIS TRANSFORM , 1997 .
[31] J. Reddy. Energy and variational methods in applied mechanics : with an introduction to the finite element method , 1984 .