Generalization of the Kantorovich Method of Dimensional Reduction

[1]  P. Rabinowitz Russian Numerical Analysis: Approximate Methods of Higher Analysis . L. V. Kantorovich and V. I. Krylov. Translated from the third Russian edition by Curtis D. Benster. Interscience, New York, 1959. xv + 681. $17. , 1961, Science.

[2]  Deok-Soo Kim,et al.  Representing the Voronoi diagram of a simple polygon using rational quadratic Bézier curves , 1995, Comput. Aided Des..

[3]  Christoph Schwab,et al.  On the posteriori estimation of the modeling error for the heat conduction in a plate and its use for adaptive hierarchical modeling , 1994 .

[4]  Alla Sheffer,et al.  Hexahedral Mesh Generation Using Voronoi Skeletons , 1998, IMR.

[5]  Hao Chen,et al.  An accelerated triangulation method for computing the skeletons of free-form solid models , 1997, Comput. Aided Des..

[6]  Walter D. Pilkey,et al.  Analysis and Design of Elastic Beams: Computational Methods , 2003 .

[7]  Vijay Srinivasan,et al.  Voronoi Diagram for Multiply-Connected Polygonal Domains I: Algorithm , 1987, IBM J. Res. Dev..

[8]  Christoph M. Hoffmann,et al.  How to Construct the Skeleton of CSG Objects , 1990 .

[9]  Siavash N. Meshkat,et al.  Voronoi Diagram for Multiply-Connected Polygonal Domains II: Implementation and Application , 1987, IBM J. Res. Dev..

[10]  Lee R. Nackman,et al.  Curvature relations in three-dimensional symmetric axes , 1982, Comput. Graph. Image Process..

[11]  M. Sabin,et al.  Hexahedral mesh generation by medial surface subdivision: Part I. Solids with convex edges , 1995 .

[12]  Cecil G. Armstrong,et al.  Coupling 1D Beams to 3D Bodies , 1998, IMR.

[13]  H. Schönheinz G. Strang / G. J. Fix, An Analysis of the Finite Element Method. (Series in Automatic Computation. XIV + 306 S. m. Fig. Englewood Clifs, N. J. 1973. Prentice‐Hall, Inc. , 1975 .

[14]  Nicholas M. Patrikalakis,et al.  Differential and Topological Properties of Medial Axis Transforms , 1996, CVGIP Graph. Model. Image Process..

[15]  Ari Rappoport,et al.  Computing Voronoi skeletons of a 3-D polyhedron by space subdivision , 2002, Comput. Geom..

[16]  K. A. Semendyayev,et al.  Handbook of mathematics , 1985 .

[17]  Mohsen Rezayat,et al.  Midsurface abstraction from 3D solid models: general theory, applications , 1996, Comput. Aided Des..

[18]  B. Gurumoorthy,et al.  Constructing medial axis transform of planar domains with curved boundaries , 2003, Comput. Aided Des..

[19]  Nickolas S. Sapidis,et al.  Domain Delaunay Tetrahedrization of arbitrarily shaped curved polyhedra defined in a solid modeling system , 1991, SMA '91.

[20]  HARRY BLUM,et al.  Shape description using weighted symmetric axis features , 1978, Pattern Recognit..

[21]  Clive L. Dym,et al.  Energy and Finite Element Methods In Structural Mechanics : SI Units , 2017 .

[22]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[23]  I. Babuska,et al.  On a dimensional reduction method. I. The optimal selection of basis functions , 1981 .

[24]  W. E. Hartnett,et al.  Shape Recognition, Prairie Fires, Convex Deficiencies and Skeletons , 1968 .

[25]  Cecil G. Armstrong,et al.  Mixed Dimensional Coupling in Finite Element Stress Analysis , 2002, Engineering with Computers.

[26]  T. Tam,et al.  2D finite element mesh generation by medial axis subdivision , 1991 .

[27]  E. Reissner,et al.  Reflections on the Theory of Elastic Plates , 1985 .

[28]  L. Kantorovich,et al.  Approximate methods of higher analysis , 1960 .

[29]  Ari Rappoport,et al.  Computing the Voronoi diagram of a 3-D polyhedron by separate computation of its symbolic and geometric parts , 1999, SMA '99.

[30]  Hwan Pyo Moon,et al.  MATHEMATICAL THEORY OF MEDIAL AXIS TRANSFORM , 1997 .

[31]  J. Reddy Energy and variational methods in applied mechanics : with an introduction to the finite element method , 1984 .