Sliding Mode Control of Magnetic Levitation System Using Radial Basis Function Neural Networks

This paper has developed a sliding mode controller (SMC) based on a radial basis function model for control of magnetic levitation system. Adaptive neural networks controllers need plant's Jacobain, but here this problem solved by sliding surface and generalized learning rule in case to eliminate Jacobain problem. The simulation results show that this method is feasible and more effective for magnetic levitation system control.

[1]  M. Lairi,et al.  A neural network with minimal structure for maglev system modeling and control , 1999, Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014).

[2]  M. J. D. Powell,et al.  Radial basis functions for multivariable interpolation: a review , 1987 .

[3]  John Chiasson,et al.  Linear and nonlinear state-space controllers for magnetic levitation , 1996, Int. J. Syst. Sci..

[4]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[5]  Mei-Yung Chen,et al.  Adaptive sliding mode controller design of a dual-axis Maglev positioning system , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[6]  Ahmed El Hajjaji,et al.  Modeling and nonlinear control of magnetic levitation systems , 2001, IEEE Trans. Ind. Electron..

[7]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[8]  Chao-Ming Huang,et al.  Adaptive nonlinear control of repulsive Maglev suspension systems , 1999, Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328).

[9]  D. L. Trumper,et al.  Linearizing control of magnetic suspension systems , 1997, IEEE Trans. Control. Syst. Technol..

[10]  Mohamed Zribi,et al.  Sliding mode control of a magnetic levitation system , 2004, Mathematical Problems in Engineering.

[11]  Scott A. Green,et al.  Robust, Digital, Nonlinear Control of Magnetic-Levitation Systems , 1998 .

[12]  Feng Zhao,et al.  Phase-Space Nonlinear Control Toolbox: The Maglev Experience , 1997, Hybrid Systems.

[13]  K. Youcef-Toumi,et al.  Achievable performance and design trade-offs in magnetic levitation control , 1998, AMC'98 - Coimbra. 1998 5th International Workshop on Advanced Motion Control. Proceedings (Cat. No.98TH8354).

[14]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[15]  Zi-Jiang Yang,et al.  Robust nonlinear control of a magnetic levitation system via backstepping approach , 1998, Proceedings of the 37th SICE Annual Conference. International Session Papers.

[16]  D. Cho,et al.  Sliding mode and classical controllers in magnetic levitation systems , 1993, IEEE Control Systems.