Direct observation of oxygen vacancy-driven structural and resistive phase transitions in La2/3Sr1/3MnO3

Resistive switching in transition metal oxides involves intricate physical and chemical behaviours with potential for non-volatile memory and memristive devices. Although oxygen vacancy migration is known to play a crucial role in resistive switching of oxides, an in-depth understanding of oxygen vacancy-driven effects requires direct imaging of atomic-scale dynamic processes and their real-time impact on resistance changes. Here we use in situ transmission electron microscopy to demonstrate reversible switching between three resistance states in epitaxial La2/3Sr1/3MnO3 films. Simultaneous high-resolution imaging and resistance probing indicate that the switching events are caused by the formation of uniform structural phases. Reversible horizontal migration of oxygen vacancies within the manganite film, driven by combined effects of Joule heating and bias voltage, predominantly triggers the structural and resistive transitions. Our findings open prospects for ionotronic devices based on dynamic control of physical properties in complex oxide nanostructures.

[1]  L. Gu,et al.  In situ TEM Observation of Resistance Switching in Titanate Based Device , 2014, Scientific Reports.

[2]  Uwe Bauer,et al.  Magneto-ionic control of interfacial magnetism. , 2014, Nature materials.

[3]  J. Hadermann,et al.  Synthesis andStructuralCharacterizationofLa 1x A x MnO 2 . 5 ( A = Ba , Sr , Ca ) Phases : Mapping the Variants of the Brownmillerite Structure , 2009 .

[4]  T. Grande,et al.  Strain-controlled oxygen vacancy formation and ordering in CaMnO3 , 2013, 1303.4749.

[5]  J. Hadermann,et al.  Synthesis and Structural Characterization of La1−xAxMnO2.5 (A = Ba, Sr, Ca) Phases: Mapping the Variants of the Brownmillerite Structure , 2009 .

[6]  M. Islam,et al.  Oxygen Diffusion in LaMnO3and LaCoO3Perovskite-Type Oxides: A Molecular Dynamics Study , 1996 .

[7]  H. Ullmann,et al.  Estimation of effective ionic radii in highly defective perovskite-type oxides from experimental data , 2001 .

[8]  M. Salamon,et al.  The physics of manganites: Structure and transport , 2001 .

[9]  H. Hwang,et al.  BASIC NOTIONS , 2022 .

[10]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[11]  Reversible oxygen vacancies doping in (La0.7,Sr0.3)MnO3 microbridges by combined self-heating and electromigration , 2015, 1702.00826.

[12]  X. Bai,et al.  Electrically driven redox process in cerium oxides. , 2010, Journal of the American Chemical Society.

[13]  Akira Ohtomo,et al.  Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3 , 2004, Nature.

[14]  S. Pennycook,et al.  Lattice mismatch accommodation via oxygen vacancy ordering in epitaxial La 0.5 Sr 0.5 CoO 3-δ thin films , 2013 .

[15]  C. M. Folkman,et al.  Reversible redox reactions in an epitaxially stabilized SrCoO(x) oxygen sponge. , 2013, Nature materials.

[16]  B. Yildiz,et al.  Tensile Lattice Strain Accelerates Oxygen Surface Exchange and Diffusion in La1–xSrxCoO3−δ Thin Films , 2013, ACS nano.

[17]  H. Ohta,et al.  High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals , 2005 .

[18]  Z. Dong,et al.  Interface and Surface Cation Stoichiometry Modified by Oxygen Vacancies in Epitaxial Manganite Films , 2012 .

[19]  Nicola A. Spaldin,et al.  Functional Ion Defects in Transition Metal Oxides , 2013, Science.

[20]  Mariappan Parans Paranthaman,et al.  Oxide-Ion Electrolytes , 1992 .

[21]  Jiang,et al.  EELS analysis of cation valence states and oxygen vacancies in magnetic oxides , 2000, Micron.

[22]  S. Bader,et al.  Structural phase diagram of La1-xSrxMnO3+ delta : Relationship to magnetic and transport properties. , 1996, Physical review. B, Condensed matter.

[23]  Lih-Juann Chen,et al.  Dynamic evolution of conducting nanofilament in resistive switching memories. , 2013, Nano letters.

[24]  Tam Mayeshiba,et al.  Strain effects on oxygen migration in perovskites. , 2015, Physical chemistry chemical physics : PCCP.

[25]  Sergei V. Kalinin,et al.  Paving the way to nanoionics: atomic origin of barriers for ionic transport through interfaces , 2015, Scientific Reports.

[26]  Stuart B. Adler,et al.  Chemical expansivity of electrochemical ceramics , 2004 .

[27]  S. van Dijken,et al.  Electron‐Beam‐Induced Perovskite–Brownmillerite–Perovskite Structural Phase Transitions in Epitaxial La2/3Sr1/3MnO3 Films , 2014, Advanced materials.

[28]  Snyder,et al.  Intrinsic electrical transport and magnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3 MOCVD thin films and bulk material. , 1996, Physical review. B, Condensed matter.

[29]  B. Davidson,et al.  Evidence of direct correlation between out-of-plane lattice parameter and metal-insulator transition temperature in oxygen-depleted manganite thin films , 2012 .

[30]  Yuchao Yang,et al.  Observation of conducting filament growth in nanoscale resistive memories , 2012, Nature Communications.

[31]  Takashi Hotta,et al.  Colossal Magnetoresistant Materials: The Key Role of Phase Separation , 2000, cond-mat/0012117.

[32]  P. Vullum,et al.  Structural phases driven by oxygen vacancies at the La0.7Sr0.3MnO3/SrTiO3 hetero-interface , 2015 .

[33]  T. Weirich,et al.  Behavior of oxygen vacancies in single-crystal SrTiO3: Equilibrium distribution and diffusion kinetics , 2012 .

[34]  Y. Meng,et al.  Frontiers of in situ electron microscopy , 2015 .

[35]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[36]  S. Parkin,et al.  Suppression of Metal-Insulator Transition in VO2 by Electric Field–Induced Oxygen Vacancy Formation , 2013, Science.

[37]  References , 1971 .

[38]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[39]  L. Kourkoutis,et al.  Epitaxial Oxygen Getter for a Brownmillerite Phase Transformation in Manganite Films , 2011, Advanced materials.

[40]  Sergei V. Kalinin,et al.  Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level. , 2012, Nature materials.

[41]  Masashi Watanabe,et al.  Atomic-resolution imaging of oxidation states in manganites , 2009 .

[42]  J. Schubert,et al.  Inducing exchange bias in La_{0.67}Sr_{0.33}MnO_{3−δ}/SrTiO_{3} thin films by strain and oxygen deficiency , 2013 .

[43]  Shinhyun Choi,et al.  Comprehensive physical model of dynamic resistive switching in an oxide memristor. , 2014, ACS nano.

[44]  Julia M. Goodfellow,et al.  Molecular dynamics study , 1997 .