A level set model for delamination – Modeling crack growth without cohesive zone or stress singularity

[1]  L. J. Sluys,et al.  Computational modeling of complex failure mechanisms in laminates , 2012 .

[2]  Aniello Riccio,et al.  On the robustness of finite element procedures based on Virtual Crack Closure Technique and fail release approach for delamination growth phenomena. Definition and assessment of a novel methodology , 2010 .

[3]  Qingda Yang,et al.  An improved cohesive element for shell delamination analyses , 2010 .

[4]  S. Mohammadi,et al.  Modeling delamination in composite laminates using XFEM by new orthotropic enrichment functions , 2010 .

[5]  L. J. Sluys,et al.  Mesh-independent modeling of both distributed and discrete matrix cracking in interaction with delamination in composites , 2010 .

[6]  G.A.O. Davies,et al.  Decohesion finite element with enriched basis functions for delamination , 2009 .

[7]  M Mohammad Samimi,et al.  An enriched cohesive zone model for delamination in brittle interfaces , 2009 .

[8]  O. Allix,et al.  Characterization and modeling of rate effects in the dynamic propagation of mode-II delamination in composite laminates , 2009 .

[9]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[10]  Nicolas Moës,et al.  A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method , 2009 .

[11]  L. J. Sluys,et al.  A phantom node formulation with mixed mode cohesive law for splitting in laminates , 2009 .

[12]  Isaac Harari,et al.  Analysis of an efficient finite element method for embedded interface problems , 2010 .

[13]  Cv Clemens Verhoosel,et al.  A dissipation‐based arc‐length method for robust simulation of brittle and ductile failure , 2009 .

[14]  Stephen R Hallett,et al.  Cohesive zone length in numerical simulations of composite delamination , 2008 .

[15]  L. J. Sluys,et al.  A continuous–discontinuous approach to simulate fracture processes in quasi-brittle materials , 2008 .

[16]  Pedro P. Camanho,et al.  An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models , 2007 .

[17]  Michael R Wisnom,et al.  A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled notched tensile specimens , 2007 .

[18]  Pedro P. Camanho,et al.  A damage model for the simulation of delamination in advanced composites under variable-mode loading , 2006 .

[19]  Nicolas Moës,et al.  Imposing Dirichlet boundary conditions in the extended finite element method , 2006 .

[20]  P. Steinmann,et al.  A geometrically nonlinear FE approach for the simulation of strong and weak discontinuities , 2006 .

[21]  De Xie,et al.  Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique. Part I: Formulation and validation , 2006 .

[22]  Qingda Yang,et al.  Cohesive models for damage evolution in laminated composites , 2005 .

[23]  John E. Dolbow,et al.  On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method , 2004 .

[24]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[25]  Garth N. Wells,et al.  A solid‐like shell element allowing for arbitrary delaminations , 2003 .

[26]  P. Camanho,et al.  Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials , 2003 .

[27]  Jean-François Remacle,et al.  A computational approach to handle complex microstructure geometries , 2003 .

[28]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[29]  R. de Borst,et al.  A consistent geometrically non‐linear approach for delamination , 2002 .

[30]  Giulio Alfano,et al.  Adaptive hierarchical enrichment for delamination fracture using a decohesive zone model , 2002 .

[31]  Stephen R Reid,et al.  Application of a delamination model to laminated composite structures , 2002 .

[32]  Stephen R Reid,et al.  General expressions for energy–release rates for delamination in composite laminates , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[33]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[34]  Tong Earn Tay,et al.  Modeling delamination growth in laminated composites , 2001 .

[35]  F. Feyel,et al.  Interface debonding models: a viscous regularization with a limited rate dependency , 2001 .

[36]  Stephen R Reid,et al.  Mode separation of energy release rate for delamination in composite laminates using sublaminates , 2001 .

[37]  M. Crisfield,et al.  Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues , 2001 .

[38]  T. Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[39]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[40]  K. Broberg Cracks and Fracture , 1999 .

[41]  Y. Ousset Numerical simulation of delamination growth in layered composite plates , 1999 .

[42]  E. Ramm,et al.  Shear deformable shell elements for large strains and rotations , 1997 .

[43]  K. Nilsson,et al.  On interface crack growth in composite plates , 1992 .

[44]  Jr. J. Crews,et al.  Mixed-Mode Bending Method for Delamination Testing , 1990 .

[45]  John H. Crews,et al.  The mixed-mode bending method for delamination testing , 1989 .

[46]  J. Willis,et al.  A comparison of the fracture criteria of griffith and barenblatt , 1967 .

[47]  E Anderson Bruce,et al.  The NASA STI Program Office provides , 1997 .

[48]  Claude Stolz,et al.  Mechanical transformations and discontinuities along a moving surface , 1995 .

[49]  de R René Borst,et al.  Free edge delamination in carbon-epoxy laminates: a novel numerical/experimental approach , 1994 .

[50]  O. Allix,et al.  Interlaminar interface modelling for the prediction of delamination , 1992 .

[51]  M. Kanninen,et al.  A finite element calculation of stress intensity factors by a modified crack closure integral , 1977 .