Novel (Zr, Ti)B2-(Zr, Ti)C-SiC ceramics via reactive hot pressing

[1]  L. Nikzad,et al.  Fabrication of (TixZr1−x)B2-(ZrxTi1−x)N composites by reactive spark plasma sintering of ZrB2-TiN , 2021 .

[2]  Yu Zhou,et al.  Reactive hot pressing of super hard (Ti,Ta)(B,C)–(Ta,Ti)C composites , 2021 .

[3]  J. Vleugels,et al.  Reactive hot pressing route for dense ZrB2-SiC and ZrB2-SiC-CNT ultra-high temperature ceramics , 2020, Journal of the European Ceramic Society.

[4]  Yu Zhou,et al.  In situ reaction and solid solution induced hardening in (Ti,Zr)B 2 ‐(Zr,Ti)C composites , 2020 .

[5]  A. Kovalčíková,et al.  Mechanical and tribological properties of TiB2-SiC and TiB2-SiC-GNPs ceramic composites , 2020 .

[6]  Yu Zhou,et al.  Reactive sintering behavior and enhanced densification of (Ti,Zr)B2–(Zr,Ti)C composites , 2020 .

[7]  Arezoo Emdadi,et al.  Predicting effective fracture toughness of ZrB2-based ultra-high temperature ceramics by phase-field modeling , 2020, Materials & Design.

[8]  Mehdi Shahedi Asl,et al.  Spark plasma sintering of quadruplet ZrB2–SiC–ZrC–Cf composites , 2020 .

[9]  J. Zou,et al.  Key issues on the reactive sintering of ZrB2 ceramics from elementary raw materials , 2019, Scripta Materialia.

[10]  G. Hilmas,et al.  Mechanical Properties and Grain Orientation Evolution of Zirconium Diboride-Zirconium Carbide Ceramics , 2018 .

[11]  G. Hilmas,et al.  Ultra-high temperature ceramics: Materials for extreme environments , 2017 .

[12]  Guo‐Jun Zhang,et al.  Reactive hot-pressing of ZrB2-ZrC-SiC ceramics via direct addition of SiC , 2016 .

[13]  Houzheng Wu,et al.  Synergetic roles of ZrC and SiC in ternary ZrB2–SiC–ZrC ceramics , 2015 .

[14]  Guo‐Jun Zhang,et al.  Contour maps of mechanical properties in ternary ZrB2SiCZrC ceramic system , 2015 .

[15]  Guo‐Jun Zhang,et al.  Microstructures, solid solution formation and high-temperature mechanical properties of ZrB2 ceramics doped with 5 vol.% WC , 2015 .

[16]  G. Hilmas,et al.  Sintering Mechanisms and Kinetics for Reaction Hot‐Pressed ZrB2 , 2015 .

[17]  G. Hilmas,et al.  Plasma arc welding of ZrB2-20 vol% ZrC ceramics , 2014 .

[18]  Zhanjun Wu,et al.  Investigation and characterization of densification, processing and mechanical properties of TiB2–SiC ceramics , 2014 .

[19]  S. Guo Densification, microstructure, elastic and mechanical properties of reactive hot-pressed ZrB2–ZrC–Zr cermets , 2014 .

[20]  Junhua Zhang,et al.  Fabrication and properties of 2D C/C–ZrB2–ZrC–SiC composites by hybrid precursor infiltration and pyrolysis , 2013 .

[21]  Peter A. Williams,et al.  Oxidation of ZrB2–SiC ultra-high temperature composites over a wide range of SiC content , 2012 .

[22]  Y. Sakka,et al.  Synthesis of Plate‐Like ZrB2 Grains , 2012 .

[23]  G. Hilmas,et al.  Mechanical properties of sintered ZrB2–SiC ceramics , 2011 .

[24]  J. Zou,et al.  Chemical Reactions, Anisotropic Grain Growth and Sintering Mechanisms of Self‐Reinforced ZrB2–SiC Doped with WC , 2011 .

[25]  G. Hilmas,et al.  Reactive hot pressing of zirconium diboride , 2009 .

[26]  J. Zou,et al.  Formation of tough interlocking microstructure in ZrB_2—SiC-based ultrahigh-temperature ceramics by pressureless sintering , 2009 .

[27]  S. Guo,et al.  Densification of ZrB2-based composites and their mechanical and physical properties: A review , 2009 .

[28]  Jiecai Han,et al.  Characterization of hot-pressed short carbon fiber reinforced ZrB2–SiC ultra-high temperature ceramic composites , 2009 .

[29]  Jiecai Han,et al.  Microstructural features and mechanical properties of ZrB2–SiC–ZrC composites fabricated by hot pressing and reactive hot pressing , 2008 .

[30]  Jiecai Han,et al.  In situ synthesis mechanism and characterization of ZrB2–ZrC–SiC ultra high-temperature ceramics , 2008 .

[31]  S. Guo,et al.  Mechanical and physical behavior of spark plasma sintered ZrC–ZrB2–SiC composites , 2008 .

[32]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[33]  G. Hilmas,et al.  Evolution of structure during the oxidation of zirconium diboride–silicon carbide in air up to 1500 °C , 2007 .

[34]  Guo‐Jun Zhang,et al.  Reactive hot pressing of ZrB2-SiC-ZrC ultra high-temperature ceramics at 1800°C , 2006 .

[35]  V. Medri,et al.  Comparison of ZrB2‐ZrC‐SiC Composites Fabricated by Spark Plasma Sintering and Hot‐Pressing , 2005 .

[36]  Long-Qing Chen,et al.  Computer Simulation of Grain Growth and Ostwald Ripening in Alumina—Zirconia Two‐Phase Composites , 2005 .

[37]  Donald T. Ellerby,et al.  High‐Strength Zirconium Diboride‐Based Ceramics , 2004 .

[38]  Guo‐Jun Zhang,et al.  Boron carbide and nitride as reactants for in situ synthesis of boride-containing ceramic composites , 2004 .

[39]  A. Bellosi,et al.  Advances in microstructure and mechanical properties of zirconium diboride based ceramics , 2003 .

[40]  Alida Bellosi,et al.  Processing and properties of zirconium diboride-based composites , 2002 .

[41]  Jonathan A. Salem,et al.  Evaluation of ultra-high temperature ceramics foraeropropulsion use , 2002 .

[42]  Danan Fan,et al.  Diffusion-controlled grain growth in two-phase solids , 1997 .

[43]  A. Bleier,et al.  Grain Growth Kinetics in Alumina–Zirconia (CeZTA) Composites , 1994 .

[44]  D. Hasselman,et al.  Evaluation ofKIc of brittle solids by the indentation method with low crack-to-indent ratios , 1982 .

[45]  D. Clarke,et al.  Observation of crystal defects using the scanning electron microscope , 1971 .

[46]  M. Whelan,et al.  Some comments on the interpretation of the 'kikuchi-like reflection patterns' observed by scanning electron microscopy , 1967 .