Control of cellular automata.

We study the problem of master-slave synchronization and control of totalistic cellular automata. The synchronization mechanism is that of setting a fraction of sites of the slave system equal to those of the master one (pinching synchronization). The synchronization observable is the distance between the two configurations. We present three control strategies that exploit local information (the number of nonzero first-order Boolean derivatives) in order to choose the sites to be synchronized. When no local information is used, we speak of simple pinching synchronization. We find the critical properties of control and discuss the best control strategy compared with simple synchronization.

[1]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[2]  Ali Boutoulout,et al.  Actuators and regional boundary controllability of parabolic systems , 2000, Int. J. Syst. Sci..

[3]  Gérard Y. Vichniac,et al.  Boolean derivatives on cellular automata , 1991 .

[4]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[5]  Synchronization universality classes and stability of smooth coupled map lattices. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Joel L. Schiff,et al.  Cellular Automata: A Discrete View of the World (Wiley Series in Discrete Mathematics & Optimization) , 2007 .

[7]  Peter M. A. Sloot,et al.  Simulating Complex Systems by Cellular Automata , 2010, Simulating Complex Systems by Cellular Automata.

[8]  J. L. Lions,et al.  Exact Controllability for Distributed Systems. Some Trends and Some Problems , 1991 .

[9]  J. Lions,et al.  Contrôlabilité exacte des systèmes distribués , 1986 .

[10]  Samira El Yacoubi,et al.  Regional Controllability with Cellular Automata Models , 2002, ACRI.

[11]  G B Ermentrout,et al.  Cellular automata approaches to biological modeling. , 1993, Journal of theoretical biology.

[12]  C. Desoer,et al.  Linear System Theory , 1963 .

[13]  Abdelhaq El Jai,et al.  Regional Analysis of a Class of Cellular Automata Models , 2006, ACRI.

[14]  Andreas Deutsch,et al.  Cellular Automaton Modeling of Biological Pattern Formation - Characterization, Applications, and Analysis , 2005, Modeling and simulation in science, engineering and technology.

[15]  Kunihiko Kaneko,et al.  Supertransients, spatiotemporal intermittency and stability of fully developed spatiotemporal chaos , 1990 .

[16]  Akif Uzman,et al.  Molecular Cell Biology (4th edition): Harvey Lodish, Arnold Berk, S. Lawrence Zipursky, Paul Matsudaira, David Baltimore and James Darnell; Freeman & Co., New York, NY, 2000, 1084 pp., list price $102.25, ISBN 0-7167-3136-3 , 2001 .

[17]  Eytan Domany,et al.  Equivalence of Cellular Automata to Ising Models and Directed Percolation , 1984 .

[18]  S. Kauffman,et al.  Cell-cell interaction and diversity of emergent behaviours. , 2011, IET systems biology.

[19]  H. Janssen,et al.  On the nonequilibrium phase transition in reaction-diffusion systems with an absorbing stationary state , 1981 .

[20]  Phil Picton Boolean Neural Networks , 1994 .

[21]  Samira El Yacoubi,et al.  Cellular Automata, 7th International Conference on Cellular Automata, for Research and Industry, ACRI 2006, Perpignan, France, September 20-23, 2006, Proceedings , 2006, ACRI.

[22]  Nazim Fatès,et al.  Perturbing the topology of the Game of Life increases its robustness to asynchrony , 2004 .

[23]  Bastien Chopard,et al.  Cellular Automata Modeling of Physical Systems , 1999, Encyclopedia of Complexity and Systems Science.

[24]  Franco Bagnoli Boolean Derivatives and Computation of Cellular Automata , 1992 .

[25]  Crutchfield,et al.  Are attractors relevant to turbulence? , 1988, Physical review letters.

[26]  Jacek M. Zurada,et al.  Extracting Rules From Neural Networks as Decision Diagrams , 2011, IEEE Transactions on Neural Networks.

[27]  Shui-Nee Chow,et al.  On the Control of Discrete-Time Distributed Parameter Systems , 1972 .

[28]  F Bagnoli,et al.  Nature of phase transitions in a probabilistic cellular automaton with two absorbing states. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Franco Bagnoli,et al.  Cellular Automata , 2002, Lecture Notes in Computer Science.

[30]  F. Bagnoli,et al.  Synchronization of non-chaotic dynamical systems , 2001 .

[31]  S. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets. , 1969, Journal of theoretical biology.

[32]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[33]  Franco Bagnoli,et al.  SYNCHRONIZATION AND MAXIMUM LYAPUNOV EXPONENTS OF CELLULAR AUTOMATA , 1998, cond-mat/9809275.

[34]  Samira El Yacoubi,et al.  Synchronization and Control of Cellular Automata , 2010, ACRI.

[35]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[36]  Antonio Politi,et al.  Unpredictable behaviour in stable systems , 1993 .

[37]  S. El Yacoubi,et al.  A mathematical method for control problems on cellular automata models , 2008, Int. J. Syst. Sci..

[38]  Roberto Serra,et al.  Dynamical Properties of a Boolean Model of Gene Regulatory Network with Memory , 2011, J. Comput. Biol..

[39]  D. Russell Controllability and Stabilizability Theory for Linear Partial Differential Equations: Recent Progress and Open Questions , 1978 .