Feedback/feedforward control of hysteresis-compensated piezoelectric actuators for high-speed scanning applications

This paper presents the control system design for a piezoelectric actuator (PEA) for a high-speed trajectory scanning application. First nonlinear hysteresis is compensated for by using the Maxwell resistive capacitor model. Then the linear dynamics of the hysteresis-compensated piezoelectric actuator are identified. A proportional plus integral (PI) controller is designed based on the linear system, enhanced by feedforward hysteresis compensation. It is found that the feedback controller does not always improve tracking accuracy. When the input frequency exceeds a certain value, feedforward control only may result in better control performance. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.

[1]  Limin Zhu,et al.  Real-time inverse hysteresis compensation of piezoelectric actuators with a modified Prandtl-Ishlinskii model. , 2012, The Review of scientific instruments.

[2]  S O R Moheimani,et al.  Invited review article: high-speed flexure-guided nanopositioning: mechanical design and control issues. , 2012, The Review of scientific instruments.

[3]  Santosh Devasia,et al.  Inverse-feedforward of charge-controlled piezopositioners , 2008 .

[4]  H. Tzou,et al.  Smart Materials, Precision Sensors/Actuators, Smart Structures, and Structronic Systems , 2004 .

[5]  Santosh Devasia,et al.  Image-based compensation of dynamic effects in scanning tunnelling microscopes , 2005 .

[6]  Qingze Zou,et al.  A review of feedforward control approaches in nanopositioning for high-speed spm , 2009 .

[7]  Kristin Y. Pettersen,et al.  Damping and Tracking Control Schemes for Nanopositioning , 2014, IEEE/ASME Transactions on Mechatronics.

[8]  Ulrich Gabbert,et al.  Hysteresis and creep modeling and compensation for a piezoelectric actuator using a fractional-order Maxwell resistive capacitor approach , 2013 .

[9]  Ben S. Cazzolato,et al.  A review, supported by experimental results, of voltage, charge and capacitor insertion method for driving piezoelectric actuators , 2010 .

[10]  Ming-Jyi Jang,et al.  Modeling and control of a piezoelectric actuator driven system with asymmetric hysteresis , 2009, J. Frankl. Inst..

[11]  Santosh Devasia,et al.  A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.

[12]  Michael Goldfarb,et al.  A Lumped Parameter Electromechanical Model for Describing the Nonlinear Behavior of Piezoelectric Actuators , 1997 .

[13]  Wei Tech Ang,et al.  Feedforward Controller With Inverse Rate-Dependent Model for Piezoelectric Actuators in Trajectory-Tracking Applications , 2007, IEEE/ASME Transactions on Mechatronics.

[14]  J.A. De Abreu-Garcia,et al.  Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model , 2005, IEEE/ASME Transactions on Mechatronics.

[15]  Aristides A. G. Requicha,et al.  Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation , 2008, IEEE Transactions on Automation Science and Engineering.

[16]  Haralampos Pozidis,et al.  High-bandwidth nanopositioner with magnetoresistance based position sensing , 2012 .

[17]  Hwan-Sik Yoon,et al.  Hysteresis-reduced dynamic displacement control of piezoceramic stack actuators using model predictive sliding mode control , 2012 .

[18]  Bijan Shirinzadeh,et al.  Sliding-Mode Enhanced Adaptive Motion Tracking Control of Piezoelectric Actuation Systems for Micro/Nano Manipulation , 2008, IEEE Transactions on Control Systems Technology.

[19]  Qingsong Xu,et al.  Model Predictive Discrete-Time Sliding Mode Control of a Nanopositioning Piezostage Without Modeling Hysteresis , 2012, IEEE Transactions on Control Systems Technology.

[20]  Santosh Devasia,et al.  Feedback-Linearized Inverse Feedforward for Creep, Hysteresis, and Vibration Compensation in AFM Piezoactuators , 2007, IEEE Transactions on Control Systems Technology.

[21]  Si-Lu Chen,et al.  Discrete Composite Control of Piezoelectric Actuators for High-Speed and Precision Scanning , 2013, IEEE Transactions on Industrial Informatics.

[22]  S Devasia,et al.  Iterative image-based modeling and control for higher scanning probe microscope performance. , 2007, The Review of scientific instruments.

[23]  Shaorong Xie,et al.  A review of non-contact micro- and nano-printing technologies , 2014 .

[24]  Bijan Shirinzadeh,et al.  Enhanced sliding mode motion tracking control of piezoelectric actuators , 2007 .

[25]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[26]  Ulrich Gabbert,et al.  Hysteresis compensation and trajectory preshaping for piezoactuators in scanning applications , 2014 .

[27]  Qingze Zou,et al.  Preview-based optimal inversion for output tracking: application to scanning tunneling microscopy , 2004, IEEE Transactions on Control Systems Technology.

[28]  T.-J. Yeh,et al.  Modeling and Identification of Hysteresis in Piezoelectric Actuators , 2006 .

[29]  Chun-Yi Su,et al.  Integral resonant damping for high-bandwidth control of piezoceramic stack actuators with asymmetric hysteresis nonlinearity , 2014 .

[30]  S O Reza Moheimani,et al.  Invited review article: accurate and fast nanopositioning with piezoelectric tube scanners: emerging trends and future challenges. , 2008, The Review of scientific instruments.

[31]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[32]  Hartmut Janocha,et al.  Adaptive Compensation of Hysteretic and Creep Non-linearities in Solid-state Actuators , 2010 .

[33]  K. Kuhnen,et al.  Inverse control of systems with hysteresis and creep , 2001 .

[34]  S. Devasia,et al.  Feedforward control of piezoactuators in atomic force microscope systems , 2009, IEEE Control Systems.

[35]  J. Shan,et al.  Creep modeling and identification for piezoelectric actuators based on fractional-order system , 2013 .

[36]  Branislav Borovac,et al.  Parameter identification and hysteresis compensation of embedded piezoelectric stack actuators , 2011 .

[37]  Srinivasa M. Salapaka,et al.  Design methodologies for robust nano-positioning , 2005, IEEE Transactions on Control Systems Technology.