On the use of Youla–Kucera parametrisation in adaptive active noise and vibration control – a review

ABSTRACT Youla–Kucera parametrisation plays a very important role in adaptive active vibration control and adaptive active noise control. This concerns both vibration and noise attenuation by feedback as well as by feedforward compensation when a measurement of an image of the disturbance (noise or vibration) is available. The paper will review the basic algorithms and various extensions trying to emphasise the advantages of using Youla–Kucera parametrisation. Specific aspects related to the use of this approach in adaptive active vibration and noise control will be mentioned. A brief review of applications and experimental testing will be provided. Abbreviations: ANC: Active noise control system; AVC: Active vibration control system; FIRYK: Youla–Kucera parametrised FIR adaptive feedforward compensator using an FIR Youla–Kucera filter; IIR: IIR adaptive feedforward compensator; IIRYK:Youla–Kucera parametrised IIR adaptive feedforward compensator using an IIR Youla–Kucera filter; IMP: Internal model principle; PAA: Parameter adaptationalgorithm; QFIR: Youla–Kucera FIR filter; QIIR: Youla–Kucera IIR filter; SPR: Strictly positive real (transfer function); YK: Youla–Kucera

[1]  Ioan Doré Landau,et al.  Data driven design of tonal noise feedback cancellers , 2017 .

[2]  Ioan Doré Landau,et al.  Adaptive narrow band disturbance rejection applied to an active suspension - an internal model principle approach , 2005, Autom..

[3]  S.J. Elliott,et al.  Active noise control , 1993, IEEE Signal Processing Magazine.

[4]  Ya.Z. Tsypkin Stochastic Discrete Systems With Internal Models , 1997 .

[5]  Alexey A. Bobtsov,et al.  Compensating for a multisinusoidal disturbance based on Youla–Kucera parametrization , 2017, Autom. Remote. Control..

[6]  P. Kumar,et al.  Theory and practice of recursive identification , 1985, IEEE Transactions on Automatic Control.

[7]  Alireza Karimi,et al.  H∞ gain-scheduled controller design for rejection of time-varying narrow-band disturbances applied to a benchmark problem , 2013, Eur. J. Control.

[8]  Brian D. O. Anderson,et al.  From Youla-Kucera to Identification, Adaptive and Nonlinear Control , 1998, Autom..

[9]  Marouane Alma,et al.  Improving playability of Blu-ray disc drives by using adaptive suppression of repetitive disturbances , 2012, Autom..

[10]  Zhizheng Wu,et al.  Youla parameterized adaptive regulation against sinusoidal exogenous inputs applied to a benchmark problem , 2013, Eur. J. Control.

[11]  Masayoshi Tomizuka,et al.  Selective model inversion and adaptive disturbance observer for time-varying vibration rejection on an active-suspension benchmark , 2013, Eur. J. Control.

[12]  Marouane Alma,et al.  A Youla-Kucera parametrized adaptive feedforward compensator for active vibration control with mechanical coupling , 2012, Autom..

[13]  Ioan Doré Landau,et al.  Adaptive feedforward compensation algorithms for active vibration control with mechanical coupling , 2011, Autom..

[14]  Ioan Doré Landau,et al.  Robust Direct Adaptive Regulation of Unknown Disturbances in the Vicinity of Low-Damped Complex Zeros—Application to AVC , 2016, IEEE Transactions on Control Systems Technology.

[15]  Huazhen Fang,et al.  Adaptive regulation via weighted robust estimation and automatic controller tuning , 2013, Eur. J. Control.

[16]  Ioan Doré Landau,et al.  Adaptive attenuation of unknown and time‐varying narrow band and broadband disturbances , 2015 .

[17]  Ioan Doré Landau,et al.  Adaptive feedforward compensation algorithms for AVC systems in the presence of a feedback controller , 2012, Autom..

[18]  Jie Zeng,et al.  Recursive filter estimation for feedforward noise cancellation with acoustic coupling , 2006 .

[19]  Ioan Doré Landau,et al.  Combined adaptive feedback and feedforward compensation for active vibration control using Youla–Kučera parametrization , 2018, Journal of Sound and Vibration.

[20]  Jwu-Sheng Hu,et al.  Feedforward active noise controller design in ducts without independent noise source measurements , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[21]  Bruce A. Francis,et al.  The internal model principle of control theory , 1976, Autom..

[22]  Ioan Doré Landau,et al.  Controller Order Reduction by Identification in Closed-Loop Applied to a Benchmark Problem , 2003, Eur. J. Control.

[23]  Zhizheng Wu,et al.  Youla parameterized adaptive vibration suppression with adaptive notch filter for unknown multiple narrow band disturbances , 2018, Journal of Vibration and Control.

[24]  Ioan Doré Landau,et al.  Indirect adaptive regulation strategy for the attenuation of time varying narrow-band disturbances applied to a benchmark problem , 2013, Eur. J. Control.

[25]  Sen M. Kuo,et al.  Active Noise Control Systems: Algorithms and DSP Implementations , 1996 .

[26]  A. G. Ulsoy,et al.  Adaptive Sinusoidal Disturbance Rejection in Linear Discrete-Time Systems—Part I: Theory , 1999 .

[27]  Jinhao Qiu,et al.  Piezoelectric vibration control for all-clamped panel using DOB-based optimal control , 2011 .

[28]  Ioan Doré Landau,et al.  Adaptive and robust active vibration control , 2017 .

[29]  Dominique Bonvin,et al.  Asymptotic rejection of nonvanishing disturbances despite plant–model mismatch , 2012 .

[30]  Petros A. Ioannou,et al.  Robustness and Performance of Adaptive Suppression of Unknown Periodic Disturbances , 2015, IEEE Transactions on Automatic Control.

[31]  Ioan Doré Landau,et al.  Benchmark on adaptive regulation - rejection of unknown/time-varying multiple narrow band disturbances , 2013, Eur. J. Control.

[32]  Ioan Doré Landau,et al.  Direct adaptive rejection of unknown time-varying narrow band disturbances applied to a benchmark problem , 2013, Eur. J. Control.

[33]  A. Galip Ulsoy,et al.  Adaptive Sinusoidal Disturbance Rejection in Linear Discrete- Time Systems— Part II: Experiments , 1999 .

[34]  Ioan Doré Landau,et al.  IIR Youla–Kucera Parameterized Adaptive Feedforward Compensators for Active Vibration Control With Mechanical Coupling , 2013, IEEE Transactions on Control Systems Technology.

[35]  Ioan Doré Landau,et al.  Indirect Adaptive Attenuation of Multiple Narrow-Band Disturbances Applied to Active Vibration Control , 2014, IEEE Transactions on Control Systems Technology.

[36]  Aurelian Constantinescu Commande robuste et adaptative d'une suspension active , 2001 .

[37]  Leonid B. Freidovich,et al.  Adaptive compensation of disturbances formed as sums of sinusoidal signals with application to an active vibration control benchmark , 2013, Eur. J. Control.

[38]  Ioan Doré Landau,et al.  Adaptive regulation—Rejection of unknown multiple narrow band disturbances (a review on algorithms and applications) , 2011 .

[39]  Foued Ben Amara,et al.  Adaptive regulation of MIMO linear systems against unknown sinusoidal exogenous inputs , 2008 .

[40]  I. D. Landau,et al.  Digital Control Systems: Design, Identification and Implementation , 2006 .

[41]  Ioan Doré Landau,et al.  Modified direct adaptive regulation scheme applied to a benchmark problem , 2016, Eur. J. Control.

[42]  Ioan Doré Landau,et al.  Robust and Adaptive Active Vibration Control Using an Inertial Actuator , 2016, IEEE Transactions on Industrial Electronics.

[43]  Karl Johan Åström,et al.  Computer-Controlled Systems: Theory and Design , 1984 .

[44]  C.R. Johnson,et al.  Stability of active noise control algorithms , 2001, IEEE Signal Processing Letters.

[45]  Arye Nehorai A minimal parameter adaptive notch filter with constrained poles and zeros , 1985, IEEE Trans. Acoust. Speech Signal Process..