Two-year global simulation of L-band brightness temperatures over land

This letter presents a synthetic L-band (1.4 GHz) multiangular brightness temperature dataset over land surfaces that was simulated at a half-degree resolution and at the global scale. The microwave emission of various land-covers (herbaceous and woody vegetation, frozen and unfrozen bare soil, snow, etc.) was computed using a simple model [L-band Microwave Emission of the Biosphere (L-MEB)] based on radiative transfer equations. The soil and vegetation characteristics needed to initialize the L-MEB model were derived from existing land-cover maps. Continuous simulations from a land-surface scheme for 1987 and 1988 provided time series of the main variables driving the L-MEB model: soil temperature at the surface and at depth, surface soil moisture, proportion of frozen surface soil moisture, and snow cover characteristics. The obtained global maps constitute a useful dataset for a first evaluation of the sensitivity of future satellite-based L-band radiometry data to soil moisture.

[1]  T. Schmugge,et al.  Vegetation effects on the microwave emission of soils , 1991 .

[2]  Yann Kerr,et al.  A simple parameterization of the L-band microwave emission from rough agricultural soils , 2001, IEEE Trans. Geosci. Remote. Sens..

[3]  Christian Mätzler,et al.  Microwave permittivity of dry sand , 1996, IEEE Trans. Geosci. Remote. Sens..

[4]  Martti Hallikainen,et al.  HUT snow emission model and its applicability to snow water equivalent retrieval , 1999, IEEE Trans. Geosci. Remote. Sens..

[5]  Jean-Pierre Wigneron,et al.  Global soil moisture retrieval from a synthetic L-band brightness temperature data set , 2003 .

[6]  B. Choudhury,et al.  Remote sensing of soil moisture content over bare field at 1.4 GHz frequency , 1981 .

[7]  J. R. Eagleman,et al.  Remote sensing of soil moisture by a 21-cm passive radiometer. [onboard Skylab] , 1976 .

[8]  P. Sellers Remote sensing of the land surface for studies of global change , 1993 .

[9]  F. Ulaby,et al.  Microwave Dielectric Behavior of Wet Soil-Part 1: Empirical Models and Experimental Observations , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[10]  F. Ulaby,et al.  Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mixing Models , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Jean-Pierre Wigneron,et al.  Surface soil moisture retrieval from L-band radiometry: a global regression study , 2003, IEEE Trans. Geosci. Remote. Sens..

[12]  H. Douville Validation and sensitivity of the global hydrologic budget in stand-alone simulations with the ISBA land-surface scheme , 1998 .

[13]  Simon Yueh,et al.  Estimates of Faraday rotation with passive microwave polarimetry for microwave remote sensing of Earth surfaces , 2000, IEEE Trans. Geosci. Remote. Sens..

[14]  N. Bruguier,et al.  A simple algorithm to retrieve soil moisture and vegetation biomass using passive microwave measurements over crop fields , 1995 .

[15]  Jean-Pierre Wigneron,et al.  Simulating L-band emission of forests in view of future satellite applications , 2002, IEEE Trans. Geosci. Remote. Sens..

[16]  R. Lacaze,et al.  A Global Database of Land Surface Parameters at 1-km Resolution in Meteorological and Climate Models , 2003 .

[17]  Yann Kerr,et al.  Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission , 2001, IEEE Trans. Geosci. Remote. Sens..

[18]  S. Planton,et al.  A Simple Parameterization of Land Surface Processes for Meteorological Models , 1989 .