ENT Rank: Retrieving Entities for Topical Information Needs through Entity-Neighbor-Text Relations

Related work has demonstrated the helpfulness of utilizing information about entities in text retrieval; here we explore the converse: Utilizing information about text in entity retrieval. We model the relevance of Entity-Neighbor-Text (ENT) relations to derive a learning-to-rank-entities model. We focus on the task of retrieving (multiple) relevant entities in response to a topical information need such as "Zika fever". The ENT Rank model is designed to exploit semi-structured knowledge resources such as Wikipedia for entity retrieval. The ENT Rank model combines (1) established features of entity-relevance, with (2) information from neighboring entities (co-mentioned or mentioned-on-page) through (3) relevance scores of textual contexts through traditional retrieval models such as BM25 and RM3.

[1]  Krisztian Balog,et al.  Overview of the TREC 2011 Entity Track , 2011, TREC.

[2]  M. de Rijke,et al.  Query modeling for entity search based on terms, categories, and examples , 2011, TOIS.

[3]  Laura Dietz,et al.  A neighborhood relevance model for entity linking , 2013, OAIR.

[4]  Fei Wang,et al.  Label Propagation through Linear Neighborhoods , 2008, IEEE Trans. Knowl. Data Eng..

[5]  W. Bruce Croft,et al.  A Markov random field model for term dependencies , 2005, SIGIR '05.

[6]  Fabian M. Suchanek,et al.  ESTER: efficient search on text, entities, and relations , 2007, SIGIR.

[7]  M. de Rijke,et al.  Adding semantics to microblog posts , 2012, WSDM '12.

[8]  Krisztian Balog,et al.  Entity search: building bridges between two worlds , 2010, SEMSEARCH '10.

[9]  Tie-Yan Liu,et al.  Word-Entity Duet Representations for Document Ranking , 2017, SIGIR.

[10]  Paul Thomas,et al.  Overview of the TREC 2009 Entity Track , 2009, TREC.

[11]  Krisztian Balog,et al.  Exploiting Entity Linking in Queries for Entity Retrieval , 2016, ICTIR.

[12]  James Allan,et al.  Frontiers, challenges, and opportunities for information retrieval: Report from SWIRL 2012 the second strategic workshop on information retrieval in Lorne , 2012, SIGF.

[13]  ChengXiang Zhai,et al.  Tapping into knowledge base for concept feedback: leveraging conceptnet to improve search results for difficult queries , 2012, WSDM '12.

[14]  Hannah Bast,et al.  More Accurate Question Answering on Freebase , 2015, CIKM.

[15]  Peter Mika,et al.  Ad-hoc object retrieval in the web of data , 2010, WWW '10.

[16]  Jing Chen,et al.  An Empirical Study of Learning to Rank for Entity Search , 2016, SIGIR.

[17]  Krisztian Balog,et al.  Entity Linking in Queries: Tasks and Evaluation , 2015, ICTIR.

[18]  Alexander Kotov,et al.  Parameterized Fielded Term Dependence Models for Ad-hoc Entity Retrieval from Knowledge Graph , 2016, SIGIR.

[19]  Alexander Kotov,et al.  Fielded Sequential Dependence Model for Ad-Hoc Entity Retrieval in the Web of Data , 2015, SIGIR.

[20]  Simone Paolo Ponzetto,et al.  Ranking Entities for Web Queries Through Text and Knowledge , 2015, CIKM.

[21]  M. de Rijke,et al.  Mapping queries to the Linking Open Data cloud: A case study using DBpedia , 2011, J. Web Semant..

[22]  Gianluca Demartini,et al.  Combining inverted indices and structured search for ad-hoc object retrieval , 2012, SIGIR '12.

[23]  Filip Radlinski,et al.  TREC Complex Answer Retrieval Overview , 2018, TREC.

[24]  Gianluca Demartini,et al.  Overview of the INEX 2009 Entity Ranking Track , 2009, INEX.

[25]  James Allan,et al.  Entity query feature expansion using knowledge base links , 2014, SIGIR.

[26]  Oren Kurland,et al.  A ranking framework for entity oriented search using Markov random fields , 2012, JIWES '12.

[27]  Oren Kurland,et al.  Document Retrieval Using Entity-Based Language Models , 2016, SIGIR.

[28]  Krisztian Balog,et al.  DBpedia-Entity v2: A Test Collection for Entity Search , 2017, SIGIR.

[29]  Xitong Liu,et al.  Latent entity space: a novel retrieval approach for entity-bearing queries , 2015, Information Retrieval Journal.

[30]  W. Bruce Croft,et al.  Learning concept importance using a weighted dependence model , 2010, WSDM '10.

[31]  Krisztian Balog,et al.  On Type-Aware Entity Retrieval , 2017, ICTIR.

[32]  Christos Faloutsos,et al.  Fast Random Walk with Restart and Its Applications , 2006, Sixth International Conference on Data Mining (ICDM'06).

[33]  Bernhard Schölkopf,et al.  Learning with Hypergraphs: Clustering, Classification, and Embedding , 2006, NIPS.

[34]  Paolo Ferragina,et al.  TAGME: on-the-fly annotation of short text fragments (by wikipedia entities) , 2010, CIKM.

[35]  Krisztian Balog,et al.  Nordlys: A Toolkit for Entity-Oriented and Semantic Search , 2017, SIGIR.

[36]  W. Bruce Croft,et al.  Relevance-Based Language Models , 2001, SIGIR '01.