Microscale c-Si (c)PV cells for low-cost power

We are exploring fabrication and assembly concepts developed for Microsystems/MEMS technology to reduce the cost of solar PV power. These methods have the potential to reduce many system level costs of current PV systems including, among others, silicon material costs, module assembly costs, and installation costs. We have demonstrated a direct c-Si material reduction of approximately 20X (including wire-saw kerf loss and polishing loss). The cells have achieved efficiencies of almost 9% and Jsc of 30 mA/cm2. We are currently using integrated-circuit (IC) fabrication tools that will lead to higher efficiencies and improved yield. These advantages and the material reduction are expected to reduce the current module manufacturing costs.

[1]  Wmm Erwin Kessels,et al.  Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3 , 2006 .

[2]  Luis Castañer,et al.  Solar Cells: Materials, Manufacture and Operation , 2004 .

[3]  R. Howe,et al.  Microstructure to substrate self-assembly using capillary forces , 2001 .

[4]  P. J. Verlinden,et al.  High-efficiency, point-contact silicon solar cells for Fresnel lens concentrator modules , 1993, Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference - 1993 (Cat. No.93CH3283-9).

[5]  Thomas H. LaBean,et al.  Nanofabrication by DNA self-assembly , 2009 .

[6]  J. S. Smith High density, low parasitic direct integration by fluidic self assembly (FSA) , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[7]  PECVD Silicon Nitride Surface Passivation for High-Efficiency N-Type Silicon Solar Cells , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[8]  J. Werner,et al.  Novel separation process for free-standing silicon thin-films , 2009 .

[9]  S. George,et al.  Low-Temperature Al2O3 Atomic Layer Deposition , 2004 .

[10]  Armin G. Aberle,et al.  Fabrication and characterisation of crystalline silicon thin-film materials for solar cells , 2006 .

[11]  George M. Whitesides,et al.  Beyond molecules: Self-assembly of mesoscopic and macroscopic components , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Andrew Blakers,et al.  A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates , 2001 .

[13]  Kenneth Y. Goldberg,et al.  Parallel microassembly with electrostatic force fields , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[14]  R. Brendel,et al.  Thin‐film (25.5 μm) solar cells from layer transfer using porous silicon with 32.7 mA/cm2 short‐circuit current density , 2003 .

[15]  C. del Cañizo,et al.  Crystalline silicon solar module technology: Towards the 1 € per watt‐peak goal , 2009 .

[16]  Vernie Everett,et al.  Sliver solar cells , 2007, SPIE Micro + Nano Materials, Devices, and Applications.

[17]  D. Arnold,et al.  Self-Assembly of Millimeter-Scale Components Using Integrated Micromagnets , 2008, IEEE Transactions on Magnetics.

[18]  A. Blakers,et al.  Sliver Cells - A Complete Photovoltaic Solution , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[19]  John A Rogers,et al.  Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. , 2008, Nature materials.

[20]  Thomas Jackson,et al.  The evolution of economic and environmental cost for crystalline silicon photovoltaics , 2000 .

[21]  K. Catchpole,et al.  Review of Thin-Film Crystalline Silicon for Solar Cell Applications , 2000 .

[22]  R. Howe,et al.  Fluidic self-assembly of micromirrors onto microactuators using capillary forces , 2002 .