Broadband biphotons in the single spatial mode through high pump focusing and walk-off effect

We present the novel technique for broadband biphoton field generation in the single spatial mode. The method is based on using short interaction length in nonlinear media. Small generation efficiency can be compensated by increasing the part of biphoton intensity per one spatial mode by means of pump focusing.

[1]  A. Valencia,et al.  Broadening the bandwidth of entangled photons: A step towards the generation of extremely short biphotons , 2008, 0807.4063.

[2]  L. Caspani,et al.  Tailoring the spatiotemporal structure of biphoton entanglement in type-I parametric down-conversion , 2010 .

[3]  S. Lloyd,et al.  Quantum-enhanced positioning and clock synchronization , 2001, Nature.

[4]  M. Efremov,et al.  Short-pulse or strong-field breakup processes: a route to study entangled wave packets , 2006 .

[5]  M. Chekhova Two-photon spectron , 2002 .

[6]  N. A. Borshchevskaya,et al.  Intracavity generation of broadband biphotons in a thin crystal , 2013 .

[7]  Yaron Silberberg,et al.  Nonlinear interactions with an ultrahigh flux of broadband entangled photons. , 2005, Physical review letters.

[8]  N. A. Borshchevskaya,et al.  Broadband biphotons in a single spatial mode , 2015, 1504.07760.

[9]  Sergei P. Kulik,et al.  Control of the spectrum of the biphoton field , 2011 .

[10]  A. Poppe,et al.  Demonstration of active routing of entanglement in a multi-user network. , 2013, Optics express.

[11]  Law,et al.  Continuous frequency entanglement: effective finite hilbert space and entropy control , 2000, Physical review letters.

[12]  Akira Tanaka,et al.  Generation of broadband spontaneous parametric fluorescence using multiple bulk nonlinear crystals. , 2012, Optics express.

[13]  Abrams,et al.  Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit , 1999, Physical review letters.

[14]  K. O'Donnell,et al.  Observation of ultrabroadband, beamlike parametric downconversion. , 2007, Optics letters.

[15]  M. Teich,et al.  Demonstration of dispersion-canceled quantum-optical coherence tomography. , 2003, Physical review letters.

[16]  G. Jaeger,et al.  Tests of a Two-Photon Technique for Measuring Polarization Mode Dispersion With Subfemtosecond Precision , 1999, Journal of Research of the National Institute of Standards and Technology.

[17]  Ultrabroadband spontaneous parametric fluorescence in 800 nm region toward ultrahigh-resolution quantum optical coherence tomography , 2014 .

[18]  L. Caspani,et al.  X entanglement: the nonfactorable spatiotemporal structure of biphoton correlation. , 2009, Physical Review Letters.

[19]  V Giovannetti,et al.  Clock synchronization with dispersion cancellation. , 2001, Physical review letters.

[20]  C. Kurtsiefer,et al.  Absolute rates of Spontaneous Parametric Down Conversion into a single transverse Gaussian mode , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[21]  M. Chekhova,et al.  Chirped biphotons and their compression in optical fibers. , 2009, Physical Review Letters.

[22]  Silvia Carrasco,et al.  Broadband light generation by noncollinear parametric downconversion. , 2006, Optics letters.

[23]  D. Klyshko Photons Nonlinear Optics , 1988 .

[24]  M D'Angelo,et al.  Two-photon diffraction and quantum lithography. , 2001, Physical review letters.

[25]  Akio Yoshizawa,et al.  Wavelength-multiplexed entanglement distribution , 2010 .

[26]  K. A. Balygin,et al.  Control of the frequency spectrum of a biphoton field due to the electro-optical effect , 2011 .

[27]  Yu Zhang,et al.  Dispersion-free quantum clock synchronization via fiber link , 2012 .

[28]  Packet narrowing and quantum entanglement in photoionization and photodissociation , 2003, quant-ph/0312119.

[29]  John M Donohue,et al.  Ultrafast time-division demultiplexing of polarization-entangled photons. , 2014, Physical review letters.

[30]  Design of a high-power continuous source of broadband down-converted light , 2005, quant-ph/0510213.

[31]  Yaron Silberberg,et al.  Temporal shaping of entangled photons. , 2005, Physical review letters.

[32]  Thomas Feurer,et al.  Versatile shaper-assisted discretization of energy–time entangled photons , 2013, 1310.4610.

[33]  Clock synchronization and dispersion , 2002 .

[34]  M. Teich,et al.  Quantum-optical coherence tomography with dispersion cancellation , 2001, quant-ph/0111140.

[35]  Giuliano Scarcelli,et al.  Distant Clock Synchronization Using Entangled Photon Pairs , 2004 .

[36]  Erik Woodhead,et al.  Creating and manipulating entangled optical qubits in the frequency domain , 2014, 1403.0805.

[37]  N. Bisht,et al.  Spectral properties of broadband biphotons generated from PPMgSLT under a type-II phase-matching condition , 2015 .

[38]  Richard J. Hughes,et al.  Optical networking for quantum key distribution and quantum communications , 2009 .

[39]  Alexander Sergienko,et al.  Enhancing the axial resolution of quantum optical coherence tomography by chirped quasi-phase matching. , 2004, Optics letters.

[40]  Akio Yoshizawa,et al.  Wavelength-multiplexed distribution of highly entangled photon-pairs over optical fiber. , 2008, Optics express.

[41]  G. Brida,et al.  Characterization of spectral entanglement of spontaneous parametric-down conversion biphotons in femtosecond pulsed regime , 2009, 0904.3009.

[42]  Silvia Carrasco,et al.  Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion. , 2008, Physical review letters.

[43]  Observing the nonclassical nature of ultra-broadband bi-photons at ultrafast speed , 2012, 1209.4194.

[44]  Philippe Emplit,et al.  Frequency Bin Entangled Photons , 2009, 0910.1325.

[45]  M. Teich,et al.  Spectral engineering of entangled two-photon states , 2006 .

[46]  A. V. Belinsky,et al.  Two-Photon Wave Packets , 1994 .

[47]  Spatial-to-spectral mapping in spontaneous parametric down-conversion , 2004 .

[48]  S. Kulik,et al.  Controlling the spectrum of a two-photon field: Inhomogeneous broadening due to a temperature gradient , 2009 .