Lower bounds for kinetic planar subdivisions

We revisit the notion of kinetic efficiency for noncanonically defined discrete attributes of moving data, like binary space partitions and triangulations. Under reasonable computational models, we obtain lower bounds on the minimum amount of work required to maintain any binary space partition of moving segments in the plane or any Steiner triangulation of moving points in the plane. Such lower bounds—the first to be obtained in the kinetic context—are necessary to evaluate the efficiency of kinetic data structures when the attribute to be maintained is not canonically defined.

[1]  Leonidas J. Guibas,et al.  Data structures for mobile data , 1997, SODA '97.

[2]  Leonidas J. Guibas,et al.  Maintaining the Extent of a Moving Point Set , 2001, Discret. Comput. Geom..

[3]  Simon Kahan,et al.  A model for data in motion , 1991, STOC '91.

[4]  Somnath Ghosh,et al.  R-S Adapted Arbitrary Lagrangian-Eulerian Finite Element Method for Metal-Forming Problems with Strain Localization , 1996 .

[5]  Henry T. Y. Yang,et al.  Adaptive 2D finite element simulation of metal forming processes , 1989 .

[6]  Leonidas J. Guibas,et al.  Kinetic binary space partitions for intersecting segments and disjoint triangles , 1998, SODA '98.

[7]  Leonidas J. Guibas,et al.  Cylindrical static and kinetic binary space partitions , 2000, Comput. Geom..

[8]  Bettina Speckmann,et al.  Kinetic collision detection for simple polygons , 2000, SCG '00.

[9]  R. Schmacher,et al.  Study for Applying Computer-Generated Images to Visual Simulation: (510842009-001) , 1969 .

[10]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[11]  T. Belytschko,et al.  Computational Methods for Transient Analysis , 1985 .

[12]  Leonidas J. Guibas,et al.  Kinetic collision detection between two simple polygons , 2004, SODA '99.

[13]  P. Agarwal,et al.  Kinetic binary space partitions for triangles , 1998 .

[14]  J. SOME DYNAMIC COMPUTATIONAL GEOMETRY PROBLEMS , 2009 .

[15]  M. Bauer,et al.  Triangulations , 1996, Discret. Math..

[16]  Enric Torres,et al.  Optimization of the Binary Space Partition Algorithm (BSP) for the Visualization of Dynamic Scenes , 1990, Eurographics.

[17]  Bruce F. Naylor,et al.  Interactive solid geometry via partitioning trees , 1992 .

[18]  R. Pollack,et al.  Advances in Discrete and Computational Geometry , 1999 .

[19]  T. Ottmann,et al.  Dynamical sets of points , 1984 .

[20]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[21]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[22]  T. M. Murali,et al.  Binary space partitions for fat rectangles , 1996, Proceedings of 37th Conference on Foundations of Computer Science.