Hot-Carrier Transfer across a Nanoparticle–Molecule Junction: The Importance of Orbital Hybridization and Level Alignment

While direct hot-carrier transfer can increase photocatalytic activity, it is difficult to discern experimentally and competes with several other mechanisms. To shed light on these aspects, here, we model from first-principles hot-carrier generation across the interface between plasmonic nanoparticles and a CO molecule. The hot-electron transfer probability depends nonmonotonically on the nanoparticle–molecule distance and can be effective at long distances, even before a strong chemical bond can form; hot-hole transfer on the other hand is limited to shorter distances. These observations can be explained by the energetic alignment between molecular and nanoparticle states as well as the excitation frequency. The hybridization of the molecular orbitals is the key predictor for hot-carrier transfer in these systems, emphasizing the necessity of ground state hybridization for accurate predictions. Finally, we show a nontrivial dependence of the hot-carrier distribution on the excitation energy, which could be exploited when optimizing photocatalytic systems.

[1]  T. Edvinsson,et al.  Direct Plasmonic Solar Cell Efficiency Dependence on Spiro-OMeTAD Li-TFSI Content , 2021, Nanomaterials.

[2]  G. Botton,et al.  Hot Hole Direct Photoelectrochemistry of Au NPs: Interband versus Intraband hot carriers , 2021, Electrochimica Acta.

[3]  D. Tomeček,et al.  Optimization of the Composition of PdAuCu Ternary Alloy Nanoparticles for Plasmonic Hydrogen Sensing , 2021, ACS Applied Nano Materials.

[4]  M. Eich,et al.  Direct Plasmonic Excitation of the Hybridized Surface States in Metal Nanoparticles , 2021, ACS Photonics.

[5]  Dayne F. Swearer,et al.  Hot carrier multiplication in plasmonic photocatalysis , 2021, Proceedings of the National Academy of Sciences.

[6]  H. Yamashita,et al.  Enhanced Catalysis of Plasmonic Silver Nanoparticles by a Combination of Macro-/Mesoporous Nanostructured Silica Support , 2021 .

[7]  H. Atwater,et al.  Unassisted Highly Selective Gas-Phase CO2 Reduction with a Plasmonic Au/p-GaN Photocatalyst Using H2O as an Electron Donor , 2021, ACS Energy Letters.

[8]  Sven Rahmann,et al.  Sustainable data analysis with Snakemake , 2021, F1000Research.

[9]  P. Nordlander,et al.  Phonon-Assisted Hot Carrier Generation in Plasmonic Semiconductor Systems , 2021, Nano letters.

[10]  Jacinto Sá,et al.  Plasmon-Mediated Oxidation Reaction on Au/p-Cu2O: The Origin of Hot Holes , 2021 .

[11]  P. Erhart,et al.  Hot-Carrier Generation in Plasmonic Nanoparticles: The Importance of Atomic Structure , 2020, ACS nano.

[12]  S. Liang,et al.  Porous CuFe for Plasmon-Assisted N2 Photofixation , 2020 .

[13]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[14]  H. Atwater,et al.  Optical Excitation of a Nanoparticle Cu/p-NiO Photocathode Improves Reaction Selectivity for CO2 Reduction in Aqueous Electrolytes. , 2020, Nano letters.

[15]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[16]  J. Khurgin Fundamental limits of hot carrier injection from metal in nanoplasmonics , 2019, 1910.01886.

[17]  Shiwu Gao,et al.  Plasmon Induced Electron-Hole Separation at the Ag/TiO2(110) Interface. , 2019, ACS nano.

[18]  P. Nordlander,et al.  Plasmon-Mediated Catalytic O2 Dissociation on Ag Nanostructures: Hot Electrons or Near Fields? , 2019, ACS Energy Letters.

[19]  P. Nordlander,et al.  Response to Comment on “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis” , 2019, Science.

[20]  Ieng-Wai Un,et al.  Comment on “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis” , 2019, Science.

[21]  J. Lischner,et al.  Single plasmon hot carrier generation in metallic nanoparticles , 2019, Communications Physics.

[22]  V. Zhdanov,et al.  Metal–polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detection , 2019, Nature Materials.

[23]  P. Erhart,et al.  Plasmon-Induced Direct Hot-Carrier Transfer at Metal-Acceptor Interfaces. , 2019, ACS nano.

[24]  Hangqi Zhao,et al.  Quantifying hot carrier and thermal contributions in plasmonic photocatalysis , 2018, Science.

[25]  Suljo Linic,et al.  Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures , 2018, Nature Catalysis.

[26]  H. Atwater,et al.  Hot Hole Collection and Photoelectrochemical CO2 Reduction with Plasmonic Au/p-GaN Photocathodes. , 2018, Nano letters.

[27]  Micael J. T. Oliveira,et al.  Recent developments in libxc - A comprehensive library of functionals for density functional theory , 2018, SoftwareX.

[28]  Risto M. Nieminen,et al.  Kohn-Sham Decomposition in Real-Time Time-Dependent Density-Functional Theory: An Efficient Tool for Analyzing Plasmonic Excitations. , 2017, Journal of chemical theory and computation.

[29]  Steven G. Louie,et al.  Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals , 2015, Nature Communications.

[30]  Suljo Linic,et al.  Photochemical transformations on plasmonic metal nanoparticles. , 2015, Nature materials.

[31]  Jussi Enkovaara,et al.  Localized surface plasmon resonance in silver nanoparticles: Atomistic first-principles time-dependent density-functional theory calculations , 2015, 1503.07234.

[32]  Peter Nordlander,et al.  Plasmon-induced hot carrier science and technology. , 2015, Nature nanotechnology.

[33]  Ravishankar Sundararaman,et al.  Theoretical predictions for hot-carrier generation from surface plasmon decay , 2014, Nature Communications.

[34]  Kristian Berland,et al.  Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional , 2013, 1309.1756.

[35]  Suljo Linic,et al.  Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. , 2011, Nature chemistry.

[36]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[37]  T. T. Rantala,et al.  Kohn-Sham potential with discontinuity for band gap materials , 2010, 1003.0296.

[38]  D. Bowler,et al.  Chemical accuracy for the van der Waals density functional , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[39]  Kristian Sommer Thygesen,et al.  Localized atomic basis set in the projector augmented wave method , 2009, 1303.0348.

[40]  J. Soler,et al.  Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. , 2008, Physical review letters.

[41]  B. Kasemo,et al.  Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios. , 2007, The Journal of chemical physics.

[42]  K. Jacobsen,et al.  Real-space grid implementation of the projector augmented wave method , 2004, cond-mat/0411218.

[43]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[44]  J. Hafner,et al.  CO adsorption on close-packed transition and noble metal surfaces: trends from ab initio calculations , 2004, cond-mat/0401095.

[45]  Angel Rubio,et al.  Solution of Poisson's equation for finite systems using plane-wave methods , 2000, physics/0012024.

[46]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[47]  John E. Stone,et al.  An efficient library for parallel ray tracing and animation , 1998 .

[48]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[49]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[50]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[51]  Bertsch,et al.  Time-dependent local-density approximation in real time. , 1996, Physical review. B, Condensed matter.

[52]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[53]  E. Baerends,et al.  Self-consistent approximation to the Kohn-Sham exchange potential. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[54]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[55]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[56]  Gwyn P. Williams,et al.  Adsorbate-substrate resonant interactions observed for Co on Cu(100) and (111) in the far-ir using synchrotron radiation , 1990 .

[57]  S. Parker,et al.  FT-rairs, eels and leed studies of the adsorption of carbon monoxide on Cu(111) , 1988 .

[58]  C. C. Bahr,et al.  Angle-Resolved Photoemission Extended Fine Structure , 1983, Other Conferences.

[59]  Craig F. Bohren,et al.  How can a particle absorb more than the light incident on it , 1983 .

[60]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .