Heightened susceptibility to interference in an animal model of amnesia: Impairment in encoding, storage, retrieval – or all three?

[1]  E. Warrington,et al.  Amnesic Syndrome: Consolidation or Retrieval? , 1970, Nature.

[2]  D Marr,et al.  Simple memory: a theory for archicortex. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[3]  E. Warrington,et al.  Further analysis of the prior learning effect in amnesic patients , 1978, Neuropsychologia.

[4]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[5]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[6]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[7]  L. Nadel,et al.  The medial temporal region and memory consolidation: A new hypothesis , 2014 .

[8]  A P Shimamura,et al.  Priming Effects in Amnesia: Evidence for a Dissociable Memory Function , 1986, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[9]  Hans J. Markowitsch,et al.  Primate learning tasks reveal strong impairments in patients with presenile or senile dementia of the Alzheimer type , 1987, Brain and Cognition.

[10]  J. Delacour,et al.  A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data , 1988, Behavioural Brain Research.

[11]  D. Amaral,et al.  Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  L. Squire,et al.  The medial temporal lobe memory system , 1991, Science.

[13]  E T Rolls,et al.  Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical visual areas. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[14]  A. Ennaceur,et al.  A new one-trial test for neurobiological studies of memory in rats. III. Spatial vs. non-spatial working memory , 1992, Behavioural Brain Research.

[15]  M. Mishkin,et al.  Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  Dave G. Mumby,et al.  Rhinal cortex lesions and object recognition in rats , 1994 .

[17]  E. Murray,et al.  Preserved Recognition Memory for Small Sets, and Impaired Stimulus Identification for Large Sets, Following Rhinal Cortex Ablations in Monkeys , 1994, The European journal of neuroscience.

[18]  D. Mumby,et al.  Rhinal cortex lesions and object recognition in rats. , 1994, Behavioral neuroscience.

[19]  D. Bilkey,et al.  Lesions of rat perirhinal cortex exacerbate the memory deficit observed following damage to the fimbria-fornix. , 1995, Behavioral neuroscience.

[20]  D. Amaral,et al.  Perirhinal and postrhinal cortices of the rat: A review of the neuroanatomical literature and comparison with findings from the monkey brain , 1995, Hippocampus.

[21]  J. Aggleton,et al.  Neurotoxic lesions of the perirhinal cortex do not mimic the behavioural effects of fornix transection in the rat , 1996, Behavioural Brain Research.

[22]  M W Brown,et al.  Mapping visual recognition memory through expression of the immediate early gene c-fos. , 1996, Neuroreport.

[23]  L R Squire,et al.  Memory, memory impairment, and the medial temporal lobe. , 1996, Cold Spring Harbor symposia on quantitative biology.

[24]  L R Squire,et al.  Impaired recognition memory in patients with lesions limited to the hippocampal formation. , 1997, Behavioral neuroscience.

[25]  L. Squire,et al.  The human perirhinal cortex and recognition memory , 1998, Hippocampus.

[26]  M. Mishkin,et al.  Object Recognition and Location Memory in Monkeys with Excitotoxic Lesions of the Amygdala and Hippocampus , 1998, The Journal of Neuroscience.

[27]  D. Amaral,et al.  Perirhinal and postrhinal cortices of the rat: Interconnectivity and connections with the entorhinal cortex , 1998, The Journal of comparative neurology.

[28]  L R Squire,et al.  Impaired recognition memory on the doors and people test after damage limited to the hippocampal region , 1999, Hippocampus.

[29]  Malcolm W. Brown,et al.  Different Contributions of the Hippocampus and Perirhinal Cortex to Recognition Memory , 1999, The Journal of Neuroscience.

[30]  S. J. Martin,et al.  Reversible neural inactivation reveals hippocampal participation in several memory processes , 1999, Nature Neuroscience.

[31]  T. Bussey,et al.  Functionally Dissociating Aspects of Event Memory: the Effects of Combined Perirhinal and Postrhinal Cortex Lesions on Object and Place Memory in the Rat , 1999, The Journal of Neuroscience.

[32]  Sophie L. Dix,et al.  Extending the spontaneous preference test of recognition: evidence of object-location and object-context recognition , 1999, Behavioural Brain Research.

[33]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[34]  Seth J. Ramus,et al.  Dissociation between the effects of damage to perirhinal cortex and area TE. , 1999, Learning & memory.

[35]  T. Bussey,et al.  Distinct patterns of behavioural impairments resulting from fornix transection or neurotoxic lesions of the perirhinal and postrhinal cortices in the rat , 2000, Behavioural Brain Research.

[36]  L. Squire,et al.  The visual paired-comparison task as a measure of declarative memory. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[37]  M. Mishkin,et al.  Neurotoxic lesions of perirhinal cortex impair visual recognition memory in rhesus monkeys , 2001, Neuroreport.

[38]  R. Burwell Borders and cytoarchitecture of the perirhinal and postrhinal cortices in the rat , 2001, The Journal of comparative neurology.

[39]  L. Saksida,et al.  Perirhinal cortex resolves feature ambiguity in complex visual discriminations , 2002, The European journal of neuroscience.

[40]  M. Freedman,et al.  Changes to the object recognition system in patients with dementia of the Alzheimer's type. , 2002, Brain and cognition.

[41]  David Gaffan,et al.  Against memory systems. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[42]  L. Saksida,et al.  The organization of visual object representations: a connectionist model of effects of lesions in perirhinal cortex , 2002, The European journal of neuroscience.

[43]  Paul E. Gilbert,et al.  Recognition memory for complex visual discriminations is influenced by stimulus interference in rodents with perirhinal cortex damage. , 2003, Learning & memory.

[44]  L. Saksida,et al.  Impairments in visual discrimination after perirhinal cortex lesions: testing ‘declarative’ vs. ‘perceptual‐mnemonic’ views of perirhinal cortex function , 2003, The European journal of neuroscience.

[45]  Andy C. H. Lee,et al.  Associative and recognition memory for novel objects in dementia: implications for diagnosis , 2003, The European journal of neuroscience.

[46]  A. Revonsuo,et al.  Visual object recognition in early Alzheimer's disease: deficits in semantic processing , 2003, Acta neurologica Scandinavica.

[47]  R. O’Reilly,et al.  Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach. , 2003, Psychological review.

[48]  Nelson Cowan,et al.  Verbal recall in amnesiacs under conditions of diminished retroactive interference. , 2004, Brain : a journal of neurology.

[49]  R. Clark,et al.  The medial temporal lobe. , 2004, Annual review of neuroscience.

[50]  Ranjan Duara,et al.  Semantic interference deficits and the detection of mild Alzheimer's disease and mild cognitive impairment without dementia , 2004, Journal of the International Neuropsychological Society.

[51]  M. Eacott,et al.  Impaired object recognition with increasing levels of feature ambiguity in rats with perirhinal cortex lesions , 2004, Behavioural Brain Research.

[52]  J. Wixted The psychology and neuroscience of forgetting. , 2004, Annual review of psychology.

[53]  Rosemary A. Cowell,et al.  Double Dissociation between the Effects of Peri-Postrhinal Cortex and Hippocampal Lesions on Tests of Object Recognition and Spatial Memory: Heterogeneity of Function within the Temporal Lobe , 2004, The Journal of Neuroscience.

[54]  D. Gaffan,et al.  Dissociated effects of perirhinal cortex ablation, fornix transection and amygdalectomy: evidence for multiple memory systems in the primate temporal lobe , 2004, Experimental Brain Research.

[55]  J. Rodd,et al.  Processing Objects at Different Levels of Specificity , 2004, Journal of Cognitive Neuroscience.

[56]  Nelson Cowan,et al.  Just lying there, remembering: Improving recall of prose in amnesic patients with mild cognitive impairment by minimising interference , 2005, Memory.

[57]  T. Bussey,et al.  Glutamate Receptors in Perirhinal Cortex Mediate Encoding, Retrieval, and Consolidation of Object Recognition Memory , 2005, The Journal of Neuroscience.

[58]  J. Holdstock,et al.  The Quarterly Journal of Experimental Psychology , 2005 .

[59]  L. Saksida,et al.  Object memory and perception in the medial temporal lobe: an alternative approach , 2005, Current Opinion in Neurobiology.

[60]  Andy C. H. Lee,et al.  Behavioral / Systems / Cognitive Functional Specialization in the Human Medial Temporal Lobe , 2005 .

[61]  Andy C. H. Lee,et al.  Specialization in the medial temporal lobe for processing of objects and scenes , 2005, Hippocampus.

[62]  Malcolm W. Brown,et al.  Contrasting Hippocampal and Perirhinalcortex Function using Immediate Early Gene Imaging , 2005, The Quarterly journal of experimental psychology. B, Comparative and physiological psychology.

[63]  T. Bussey,et al.  Transient Inactivation of Perirhinal Cortex Disrupts Encoding, Retrieval, and Consolidation of Object Recognition Memory , 2005, The Journal of Neuroscience.

[64]  T. Bussey,et al.  Removal of cholinergic input to perirhinal cortex disrupts object recognition but not spatial working memory in the rat , 2005, The European journal of neuroscience.

[65]  Rosemary A. Cowell,et al.  Why Does Brain Damage Impair Memory? A Connectionist Model of Object Recognition Memory in Perirhinal Cortex , 2006, The Journal of Neuroscience.

[66]  L. Saksida,et al.  Memory, perception, and the ventral visual‐perirhinal‐hippocampal stream: Thinking outside of the boxes , 2007, Hippocampus.

[67]  Rosemary A. Cowell,et al.  Perirhinal cortex resolves feature ambiguity in configural object recognition and perceptual oddity tasks. , 2007, Learning & memory.

[68]  C. Price,et al.  Perirhinal Contributions to Human Visual Perception , 2007, Current Biology.

[69]  L. Saksida,et al.  Scopolamine infused into perirhinal cortex improves object recognition memory by blocking the acquisition of interfering object information. , 2007, Learning & memory.

[70]  D. Done,et al.  Evidence for a dissociation of structural and semantic knowledge in dementia of the Alzheimer type (DAT) , 2007, Neuropsychologia.

[71]  Andy C. H. Lee,et al.  Differing profiles of face and scene discrimination deficits in semantic dementia and Alzheimer's disease , 2007, Neuropsychologia.

[72]  Rosemary A. Cowell,et al.  Perceptual Functions of Perirhinal Cortex in Rats: Zero-Delay Object Recognition and Simultaneous Oddity Discriminations , 2007, The Journal of Neuroscience.

[73]  Andy C. H. Lee,et al.  Activating the medial temporal lobe during oddity judgment for faces and scenes. , 2008, Cerebral cortex.

[74]  Richard G M Morris,et al.  Faster forgetting contributes to impaired spatial memory in the PDAPP mouse: deficit in memory retrieval associated with increased sensitivity to interference? , 2008, Learning & memory.

[75]  Boyer D. Winters,et al.  Object recognition memory: Neurobiological mechanisms of encoding, consolidation and retrieval , 2008, Neuroscience & Biobehavioral Reviews.

[76]  Michaela Dewar,et al.  Delaying interference enhances memory consolidation in amnesic patients. , 2009, Neuropsychology.