Global RDF Vector Space Embeddings

Vector space embeddings have been shown to perform well when using RDF data in data mining and machine learning tasks. Existing approaches, such as RDF2Vec, use local information, i.e., they rely on local sequences generated for nodes in the RDF graph. For word embeddings, global techniques, such as GloVe, have been proposed as an alternative. In this paper, we show how the idea of global embeddings can be transferred to RDF embeddings, and show that the results are competitive with traditional local techniques like RDF2Vec.

[1]  Pavel Berkhin,et al.  Bookmark-Coloring Algorithm for Personalized PageRank Computing , 2006, Internet Math..

[2]  John B. Goodenough,et al.  Contextual correlates of synonymy , 1965, CACM.

[3]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[4]  Jens Lehmann,et al.  DBpedia - A large-scale, multilingual knowledge base extracted from Wikipedia , 2015, Semantic Web.

[5]  Heiko Paulheim,et al.  A Collection of Benchmark Datasets for Systematic Evaluations of Machine Learning on the Semantic Web , 2016, SEMWEB.

[6]  Jason Weston,et al.  Translating Embeddings for Modeling Multi-relational Data , 2013, NIPS.

[7]  Zhiyuan Liu,et al.  Learning Entity and Relation Embeddings for Knowledge Graph Completion , 2015, AAAI.

[8]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[9]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.

[10]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[11]  Pinar Yanardag,et al.  Deep Graph Kernels , 2015, KDD.

[12]  Thorsten Joachims,et al.  Evaluation methods for unsupervised word embeddings , 2015, EMNLP.

[13]  Evgeniy Gabrilovich,et al.  Computing Semantic Relatedness Using Wikipedia-based Explicit Semantic Analysis , 2007, IJCAI.

[14]  Zhen Wang,et al.  Knowledge Graph Embedding by Translating on Hyperplanes , 2014, AAAI.

[15]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[16]  Hector Garcia-Molina,et al.  The Eigentrust algorithm for reputation management in P2P networks , 2003, WWW '03.

[17]  Heiko Paulheim,et al.  RDF2Vec: RDF Graph Embeddings for Data Mining , 2016, SEMWEB.

[18]  Krishna P. Gummadi,et al.  Measurement and analysis of online social networks , 2007, IMC '07.

[19]  Danqi Chen,et al.  Reasoning With Neural Tensor Networks for Knowledge Base Completion , 2013, NIPS.

[20]  Jure Leskovec,et al.  node2vec: Scalable Feature Learning for Networks , 2016, KDD.

[21]  Craig A. Knoblock,et al.  Efficient Graph-Based Document Similarity , 2016, ESWC.

[22]  Ziqi Zhang,et al.  Recent advances in methods of lexical semantic relatedness – a survey , 2012, Natural Language Engineering.

[23]  Evgeniy Gabrilovich,et al.  A Review of Relational Machine Learning for Knowledge Graphs , 2015, Proceedings of the IEEE.

[24]  Hans-Peter Kriegel,et al.  A Three-Way Model for Collective Learning on Multi-Relational Data , 2011, ICML.

[25]  Michael D. Lee,et al.  An Empirical Evaluation of Models of Text Document Similarity , 2005 .

[26]  Heiko Paulheim,et al.  Biased graph walks for RDF graph embeddings , 2017, WIMS.

[27]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[28]  Achim Rettinger,et al.  PageRank on Wikipedia: Towards General Importance Scores for Entities , 2016, @ESWC.

[29]  Simone Paolo Ponzetto,et al.  Knowledge-based graph document modeling , 2014, WSDM.

[30]  Goran Glavas,et al.  Improving Neural Knowledge Base Completion with Cross-Lingual Projections , 2017, EACL.

[31]  Rada Mihalcea,et al.  Semantic Relatedness Using Salient Semantic Analysis , 2011, AAAI.

[32]  Heiko Paulheim,et al.  RDF Graph Embeddings for Content-based Recommender Systems , 2016, CBRecSys@RecSys.