On the origin of internal field in Lithium Niobate crystals directly observed by digital holography.

We show the defect dependence of the internal field in Lithium Niobate using a full-field interferometric method and demonstrate that it can be directly measured on some clusters of defects embedded in a stoichiometric matrix. Results show that the value of the internal field grows in proximity of defects and vanishes far from them, which addresses the long-standing issue about its origin in Lithium Niobate crystal.

[1]  Á. Péter,et al.  Structural defects in flux-grown stoichiometric LiNbO3 single crystals , 2000 .

[2]  G. Malovichko,et al.  EPR, ENDOR, and optical-absorption study of Cr 3+ centers substituting for niobium in Li-rich lithium niobate crystals , 2000 .

[3]  Lute Maleki,et al.  Nonlinear optics and crystalline whispering gallery mode cavities. , 2004, Physical review letters.

[4]  V. Berger,et al.  Nonlinear Photonic Crystals , 1998 .

[5]  P. Cloetens,et al.  Phase Retrieval by Combined Bragg and Fresnel X-Ray Diffraction Imaging , 1998 .

[6]  V. Grachev,et al.  Interrelation of intrinsic and extrinsic defects – congruent, stoichiometric, and regularly ordered lithium niobate , 1999 .

[7]  J. D. Joannopoulos,et al.  Enhancement of nonlinear effects using photonic crystals , 2004, Nature materials.

[8]  Ross,et al.  Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal , 2000, Physical review letters.

[9]  M. Fejer,et al.  Quasi-phase-matched second harmonic generation: tuning and tolerances , 1992 .

[10]  Mool C. Gupta,et al.  Origin of internal field and visualization of 180° domains in congruent LiTaO3 crystals , 1996 .

[11]  Mool C. Gupta,et al.  OBSERVATION OF INTERNAL FIELD IN LITAO3 SINGLE CRYSTALS : ITS ORIGIN AND TIME-TEMPERATURE DEPENDENCE , 1996 .

[12]  V. Gopalan,et al.  The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals , 1998 .

[13]  Ersan Üstündag,et al.  Direct measurement of triaxial strain fields around ferroelectric domains using X-ray microdiffraction , 2003, Nature materials.

[14]  K. Hoshikawa,et al.  LiNbO3 single crystal growth from Li-rich melts by the continuous charging and double crucible Czochralski methods , 1993 .

[15]  Domenico Alfieri,et al.  In-situ visualization, monitoring and analysis of electric field domain reversal process in ferroelectric crystals by digital holography. , 2004, Optics express.

[16]  B. Sturman,et al.  Strong permanent reversible diffraction gratings in copper-doped lithium niobate crystals caused by a zero-electric-field photorefractive effect , 2005 .

[17]  C. Catlow,et al.  Computer-simulation studies of intrinsic defects in LiNbO3 crystals. , 1989, Physical review. B, Condensed matter.

[18]  K. Kitamura,et al.  Defect Structure Model of MgO-Doped LiNbO3 , 1995 .

[19]  A. Snigirev,et al.  Phase-mapping of periodically domain-inverted LiNbO3 with coherent X-rays , 1998, Nature.

[20]  L. Hollberg,et al.  Difference-frequency generation in PPLN at 4.25 μm: an analysis of sensitivity limits for DFG spectrometers , 2000 .

[21]  V. Gopalan,et al.  Direct x-ray synchrotron imaging of strains at 180° domain walls in congruent LiNbO3 and LiTaO3 crystals , 2000 .

[22]  V. Gopalan,et al.  Domain reversal and nonstoichiometry in lithium tantalate , 2001 .

[23]  Domenico Alfieri,et al.  Investigation of electric internal field in congruent LiNbO3 by electro-optic effect , 2004 .

[24]  N. Gisin,et al.  PPLN waveguide for quantum communication , 2001, quant-ph/0107125.

[25]  Karsten Buse,et al.  Light deflection from ferroelectric domain boundaries , 2004 .

[26]  Melania Paturzo,et al.  Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method , 2004 .

[27]  A Finizio,et al.  Whole optical wavefields reconstruction by digital holography. , 2001, Optics express.