On drift parameter estimation in models with fractional Brownian motion
暂无分享,去创建一个
[1] Alain Le Breton,et al. Filtering and parameter estimation in a simple linear system driven by a fractional Brownian motion , 1998 .
[2] Prakasa Rao,et al. Statistical Inference for Fractional Diffusion Processes: Rao/Statistical Inference for Fractional Diffusion Processes , 2010 .
[3] Wei-Guo Zhang,et al. Parameter estimation for fractional Ornstein–Uhlenbeck processes at discrete observation , 2011 .
[4] O. Marichev,et al. Fractional Integrals and Derivatives: Theory and Applications , 1993 .
[5] I. Norros,et al. An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions , 1999 .
[6] A. Breton,et al. Statistical Analysis of the Fractional Ornstein–Uhlenbeck Type Process , 2002 .
[7] I︠U︡lii︠a︡ S. Mishura. Stochastic Calculus for Fractional Brownian Motion and Related Processes , 2008 .
[8] Zhang Weiguo,et al. Exact maximum likelihood estimators for drift fractional Brownian motions , 2009, 0904.4186.
[9] Esko Valkeila,et al. Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion , 2001 .
[10] D. Nualart,et al. Differential equations driven by fractional Brownian motion , 2002 .
[11] M. Zähle. Integration with respect to fractal functions and stochastic calculus. I , 1998 .
[12] D. Nualart,et al. Stochastic Differential Equations Driven by Fractional Brownian Motion and Standard Brownian Motion , 2008, 0801.4963.
[13] Gerhard-Wilhelm Weber,et al. Parameter Estimation in Stochastic Differential Equations , 2012 .
[14] Alʹbert Nikolaevich Shiri︠a︡ev,et al. Statistics of random processes , 1977 .
[15] Karine Bertin,et al. Drift parameter estimation in fractional diffusions driven by perturbed random walks , 2011 .
[16] M. Zähle. On the Link Between Fractional and Stochastic Calculus , 1999 .
[17] David Nualart,et al. Parameter estimation for fractional Ornstein–Uhlenbeck processes , 2009, 0901.4925.
[18] Wei-guo Zhang,et al. Maximum-likelihood estimators in the mixed fractional Brownian motion , 2011 .
[19] V. Buldygin,et al. Metric characterization of random variables and random processes , 2000 .
[20] Y. Mishura,et al. Existence and Uniqueness of the Solution of Stochastic Differential Equation Involving Wiener Process and Fractional Brownian Motion with Hurst Index H > 1/2 , 2011, 1103.0615.
[21] H. Kober. ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .