On drift parameter estimation in models with fractional Brownian motion

We consider a stochastic differential equation involving standard and fractional Brownian motion with unknown drift parameter to be estimated. We investigate the standard maximum likelihood estimate of the drift parameter, two non-standard estimates and three estimates for the sequential estimation. Model strong consistency and some other properties are proved. The linear model and Ornstein–Uhlenbeck model are studied in detail. As an auxiliary result, an asymptotic behaviour of the fractional derivative of the fractional Brownian motion is established.

[1]  Alain Le Breton,et al.  Filtering and parameter estimation in a simple linear system driven by a fractional Brownian motion , 1998 .

[2]  Prakasa Rao,et al.  Statistical Inference for Fractional Diffusion Processes: Rao/Statistical Inference for Fractional Diffusion Processes , 2010 .

[3]  Wei-Guo Zhang,et al.  Parameter estimation for fractional Ornstein–Uhlenbeck processes at discrete observation , 2011 .

[4]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[5]  I. Norros,et al.  An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions , 1999 .

[6]  A. Breton,et al.  Statistical Analysis of the Fractional Ornstein–Uhlenbeck Type Process , 2002 .

[7]  I︠U︡lii︠a︡ S. Mishura Stochastic Calculus for Fractional Brownian Motion and Related Processes , 2008 .

[8]  Zhang Weiguo,et al.  Exact maximum likelihood estimators for drift fractional Brownian motions , 2009, 0904.4186.

[9]  Esko Valkeila,et al.  Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion , 2001 .

[10]  D. Nualart,et al.  Differential equations driven by fractional Brownian motion , 2002 .

[11]  M. Zähle Integration with respect to fractal functions and stochastic calculus. I , 1998 .

[12]  D. Nualart,et al.  Stochastic Differential Equations Driven by Fractional Brownian Motion and Standard Brownian Motion , 2008, 0801.4963.

[13]  Gerhard-Wilhelm Weber,et al.  Parameter Estimation in Stochastic Differential Equations , 2012 .

[14]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Statistics of random processes , 1977 .

[15]  Karine Bertin,et al.  Drift parameter estimation in fractional diffusions driven by perturbed random walks , 2011 .

[16]  M. Zähle On the Link Between Fractional and Stochastic Calculus , 1999 .

[17]  David Nualart,et al.  Parameter estimation for fractional Ornstein–Uhlenbeck processes , 2009, 0901.4925.

[18]  Wei-guo Zhang,et al.  Maximum-likelihood estimators in the mixed fractional Brownian motion , 2011 .

[19]  V. Buldygin,et al.  Metric characterization of random variables and random processes , 2000 .

[20]  Y. Mishura,et al.  Existence and Uniqueness of the Solution of Stochastic Differential Equation Involving Wiener Process and Fractional Brownian Motion with Hurst Index H > 1/2 , 2011, 1103.0615.

[21]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .