The use of mathematical linguistic methods in creating secret sharing threshold algorithms
暂无分享,去创建一个
[1] Philippe Béguin,et al. General Short Computational Secret Sharing Schemes , 1995, EUROCRYPT.
[2] Gilles Brassard,et al. Advances in Cryptology — CRYPTO’ 89 Proceedings , 2001, Lecture Notes in Computer Science.
[3] Tzong-Chen Wu,et al. A geometric approach for sharing secrets , 1995, Comput. Secur..
[4] G. R. BLAKLEY. Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).
[5] G. R. Blakley. One time Pads are Key Safegaurding Schemes, not Cryptosystems. Fast Key Safeguarding Schemes (Threshold Schemes) Exist. , 1980, 1980 IEEE Symposium on Security and Privacy.
[6] Marek R. Ogiela,et al. Linguistic Cryptographic Threshold Schemes , 2009 .
[7] Marek R. Ogiela,et al. Modern Computational Intelligence Methods for the Interpretation of Medical Images , 2008, Studies in Computational Intelligence.
[8] Wei Zhao,et al. Privacy-Preserving Data Mining Systems , 2007, Computer.
[9] Alfredo De Santis,et al. Constructions and Bounds for Visual Cryptography , 1996, ICALP.
[10] Yvo Desmedt,et al. Threshold Cryptosystems , 1989, CRYPTO.
[11] Alfredo De Santis,et al. Lower Bounds for Robust Secret Sharing Schemes , 1997, Inf. Process. Lett..
[12] Keith M. Martin,et al. Ideal secret sharing schemes with multiple secrets , 1996, Journal of Cryptology.
[13] Adi Shamir,et al. How to share a secret , 1979, CACM.
[14] Gustavus J. Simmons,et al. Contemporary Cryptology: The Science of Information Integrity , 1994 .
[15] Wu Tzong-Chen,et al. Refereed paper: A geometric approach for sharing secrets , 1995 .
[16] Amos Beimel,et al. Universally ideal secret-sharing schemes , 1994, IEEE Trans. Inf. Theory.