Mitochondria and Trypanosomatids: Targets and Drugs

[1]  B. Trumpower,et al.  Design of anti-parasitic and anti-fungal hydroxy-naphthoquinones that are less susceptible to drug resistance. , 2011, Molecular and biochemical parasitology.

[2]  S. Castanys,et al.  Tafenoquine, an Antiplasmodial 8-Aminoquinoline, Targets Leishmania Respiratory Complex III and Induces Apoptosis , 2010, Antimicrobial Agents and Chemotherapy.

[3]  T. Souto-Padrón,et al.  Effect of Crotalus viridis viridis snake venom on the ultrastructure and intracellular survival of Trypanosoma cruzi , 2010, Parasitology.

[4]  R. Dey,et al.  Characterization of a Leishmania stage‐specific mitochondrial membrane protein that enhances the activity of cytochrome c oxidase and its role in virulence , 2010, Molecular microbiology.

[5]  A. Denicola,et al.  Mode of action of nifurtimox and N-oxide-containing heterocycles against Trypanosoma cruzi: is oxidative stress involved? , 2010, Biochemical pharmacology.

[6]  C. Nakamura,et al.  In vitro anti-trypanosomal activity of elatol isolated from red seaweed Laurencia dendroidea , 2010, Parasitology.

[7]  D. Boykin,et al.  Arylimidamide DB766, a Potential Chemotherapeutic Candidate for Chagas' Disease Treatment , 2010, Antimicrobial Agents and Chemotherapy.

[8]  M. Parsons,et al.  Diverse Effects on Mitochondrial and Nuclear Functions Elicited by Drugs and Genetic Knockdowns in Bloodstream Stage Trypanosoma brucei , 2010, PLoS neglected tropical diseases.

[9]  S. Biswas,et al.  Stage specific developmental changes in the mitochondrial and surface membrane associated redox systems of Leishmania donovani promastigote and amastigote , 2010, Biochemistry (Moscow).

[10]  C. Dardonville,et al.  New benzophenone-derived bisphosphonium salts as leishmanicidal leads targeting mitochondria through inhibition of respiratory complex II. , 2010, Journal of medicinal chemistry.

[11]  L. Gille,et al.  Mitochondria as a promising antiparasitic target. , 2010, Current clinical pharmacology.

[12]  Maria Laura Bolognesi,et al.  Neglected tropical diseases: multi-target-directed ligands in the search for novel lead candidates against Trypanosoma and Leishmania. , 2009, Journal of medicinal chemistry.

[13]  W. de Souza,et al.  Particularities of mitochondrial structure in parasitic protists (Apicomplexa and Kinetoplastida). , 2009, The international journal of biochemistry & cell biology.

[14]  K. Kristensson,et al.  Preclinical Assessment of the Treatment of Second-Stage African Trypanosomiasis with Cordycepin and Deoxycoformycin , 2009, PLoS neglected tropical diseases.

[15]  Prashant Khare,et al.  Pro-apoptotic effect of the landrace Bangla Mahoba of Piper betle on Leishmania donovani may be due to the high content of eugenol. , 2009, Journal of medical microbiology.

[16]  B. Zhivotovsky,et al.  Mitochondria as targets for cancer chemotherapy. , 2009, Seminars in cancer biology.

[17]  M. Chatterjee,et al.  Berberine chloride causes a caspase-independent, apoptotic-like death in Leishmania donovani promastigotes , 2009, Free radical research.

[18]  A. Roy,et al.  Mitochondria-Dependent Reactive Oxygen Species-Mediated Programmed Cell Death Induced by 3,3′-Diindolylmethane through Inhibition of F0F1-ATP Synthase in Unicellular Protozoan Parasite Leishmania donovani , 2008, Molecular Pharmacology.

[19]  K. Stuart,et al.  Structural and Functional Association of Trypanosoma brucei MIX Protein with Cytochrome c Oxidase Complex , 2008, Eukaryotic Cell.

[20]  Terry K. Smith,et al.  Mitochondrial fatty acid synthesis is required for normal mitochondrial morphology and function in Trypanosoma brucei , 2008, Molecular microbiology.

[21]  N. Sen,et al.  Mitochondrion of protozoan parasite emerges as potent therapeutic target: exciting drugs are on the horizon. , 2008, Current pharmaceutical design.

[22]  M. Motta Kinetoplast as a potential chemotherapeutic target of trypanosomatids. , 2008, Current pharmaceutical design.

[23]  C. Caffrey,et al.  Recent initiatives and strategies to developing new drugs for tropical parasitic diseases , 2008, Expert opinion on drug discovery.

[24]  S. Meshnick,et al.  The Mitochondrion Is a Site of Trypanocidal Action of the Aromatic Diamidine DB75 in Bloodstream Forms of Trypanosoma brucei , 2007, Antimicrobial Agents and Chemotherapy.

[25]  M. McConville,et al.  The Leishmania–macrophage interaction: a metabolic perspective , 2007, Cellular microbiology.

[26]  A. Vercesi,et al.  Sterol methenyl transferase inhibitors alter the ultrastructure and function of the Leishmania amazonensis mitochondrion leading to potent growth inhibition. , 2007, Protist.

[27]  P. Wardman,et al.  Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. , 2007, Free radical biology & medicine.

[28]  M. Chatterjee,et al.  Artemisinin triggers induction of cell-cycle arrest and apoptosis in Leishmania donovani promastigotes. , 2007, Journal of medical microbiology.

[29]  C. Mandal,et al.  Racemoside A, an anti-leishmanial, water-soluble, natural steroidal saponin, induces programmed cell death in Leishmania donovani. , 2007, Journal of medical microbiology.

[30]  Eleanor C. Saunders,et al.  Living in a phagolysosome; metabolism of Leishmania amastigotes. , 2007, Trends in parasitology.

[31]  S. Krishna,et al.  Artemisinins Inhibit Trypanosoma cruzi and Trypanosoma brucei rhodesiense In Vitro Growth , 2007, Antimicrobial Agents and Chemotherapy.

[32]  P. T. Englund,et al.  Mitochondrial Fatty Acid Synthesis in Trypanosoma brucei* , 2007, Journal of Biological Chemistry.

[33]  H. D. de Koning,et al.  Drugs and drug resistance in African trypanosomiasis. , 2007, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[34]  N. Sen,et al.  Leishmania donovani: dyskinetoplastid cells survive and proliferate in the presence of pyruvate and uridine but do not undergo apoptosis after treatment with camptothecin. , 2007, Experimental parasitology.

[35]  S. Pramanik,et al.  Apoptosis is induced in leishmanial cells by a novel protein kinase inhibitor withaferin A and is facilitated by apoptotic topoisomerase I–DNA complex , 2007, Cell Death and Differentiation.

[36]  N. Sen,et al.  Leishmania donovani: intracellular ATP level regulates apoptosis-like death in luteolin induced dyskinetoplastid cells. , 2006, Experimental parasitology.

[37]  B. Das,et al.  Topoisomerases of kinetoplastid parasites: why so fascinating? , 2006, Molecular microbiology.

[38]  R. Ott,et al.  Trypanosome alternative oxidase: from molecule to function. , 2006, Trends in parasitology.

[39]  P. T. Englund,et al.  Fatty Acid Synthesis by Elongases in Trypanosomes , 2006, Cell.

[40]  Y. Pérez-Pertejo,et al.  DNA topoisomerase I from parasitic protozoa: a potential target for chemotherapy. , 2006, Biochimica et biophysica acta.

[41]  K. Nagai,et al.  Chemotherapeutic efficacy of ascofuranone in Trypanosoma vivax-infected mice without glycerol. , 2006, Parasitology international.

[42]  M. J. Soares,et al.  Effect of a beta-lapachone-derived naphthoimidazole on Trypanosoma cruzi: identification of target organelles. , 2005, The Journal of antimicrobial chemotherapy.

[43]  O. Tapia,et al.  The chemotherapy of chagas' disease: an overview. , 2005, Mini reviews in medicinal chemistry.

[44]  J. Urbina,et al.  Anti-proliferative synergy of lysophospholipid analogues and ketoconazole against Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae): cellular and ultrastructural analysis. , 2005, The Journal of antimicrobial chemotherapy.

[45]  H. F. de Andrade,et al.  Synthesis and Antileishmanial Activities of Novel 3-Substituted Quinolines , 2005, Antimicrobial Agents and Chemotherapy.

[46]  W. Souza,et al.  Programmed cell death in Trypanosoma cruzi induced by Bothrops jararaca venom. , 2005, Memorias do Instituto Oswaldo Cruz.

[47]  R. Figueiredo,et al.  Effect of usnic acid from the lichen Cladonia substellata on Trypanosoma cruzi in vitro: an ultrastructural study. , 2005, Micron.

[48]  J. M. Salas,et al.  Therapeutic Potential of New Pt(II) and Ru(III) Triazole-Pyrimidine Complexes against Leishmania donovani , 2004, Pharmacology.

[49]  S. Bhattacharyya,et al.  The Complexity of Mitochondrial tRNA Import , 2004, RNA biology.

[50]  J. Piñero,et al.  Fungus-Elicited Metabolites from Plants as an Enriched Source for New Leishmanicidal Agents: Antifungal Phenyl-Phenalenone Phytoalexins from the Banana Plant (Musa acuminata) Target Mitochondria of Leishmania donovani Promastigotes , 2004, Antimicrobial Agents and Chemotherapy.

[51]  Ping Xu,et al.  Complete Genome Sequence of the Apicomplexan, Cryptosporidium parvum , 2004, Science.

[52]  C. Shaha,et al.  Apoptotic Death in Leishmania donovani Promastigotes in Response to Respiratory Chain Inhibition , 2004, Journal of Biological Chemistry.

[53]  D. Malvy,et al.  Quercetin Induces Apoptosis of Trypanosoma brucei gambiense and Decreases the Proinflammatory Response of Human Macrophages , 2004, Antimicrobial Agents and Chemotherapy.

[54]  A. Vaidya Mitochondrial and plastid functions as antimalarial drug targets. , 2004, Current drug targets. Infectious disorders.

[55]  Colin Berry,et al.  Analogues of thiolactomycin as potential anti-malarial and anti-trypanosomal agents. , 2004, Bioorganic & medicinal chemistry.

[56]  A. Fairlamb Chemotherapy of human African trypanosomiasis: current and future prospects. , 2003, Trends in parasitology.

[57]  J. Urbina,et al.  Specific chemotherapy of Chagas disease: controversies and advances. , 2003, Trends in parasitology.

[58]  Charles L. Hoppel,et al.  Production of Reactive Oxygen Species by Mitochondria , 2003, Journal of Biological Chemistry.

[59]  R. Gottlieb Mitochondrial signaling in apoptosis: Mitochondrial daggers to the breaking heart , 2003, Basic Research in Cardiology.

[60]  K. Nagai,et al.  The efficacy of ascofuranone in a consecutive treatment on Trypanosoma brucei brucei in mice. , 2003, Parasitology international.

[61]  D. Rice,et al.  Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa. , 2003, Molecular and biochemical parasitology.

[62]  K. Werbovetz Promising therapeutic targets for antileishmanial drugs , 2002, Expert opinion on therapeutic targets.

[63]  Ming Chen,et al.  Aurones Interfere with Leishmania major Mitochondrial Fumarate Reductase , 2002, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[64]  A. Astier,et al.  Characterisation of atovaquone resistance in Leishmania infantum promastigotes. , 2002, International journal for parasitology.

[65]  J. Castro,et al.  Trypanocidal action of 2,4-dichloro-6-phenylphenoxyethyl diethylamine hydrobromide (Lilly 18947) on Trypanosoma cruzi. , 2002, Acta pharmacologica Sinica.

[66]  T. Ohashi,et al.  Rapid oxidation of dichlorodihydrofluorescin with heme and hemoproteins: formation of the fluorescein is independent of the generation of reactive oxygen species , 2002, FEBS letters.

[67]  L. Zhai,et al.  Purification and enzymatic activity of an NADH‐fumarate reductase and other mitochondrial activities of Leishmania parasites , 2001, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[68]  A. Schneider Unique aspects of mitochondrial biogenesis in trypanosomatids. , 2001, International journal for parasitology.

[69]  I. Scheffler,et al.  Mitochondria make a come back. , 2001, Advanced drug delivery reviews.

[70]  Ming Chen,et al.  Inhibition of Fumarate Reductase inLeishmania major and L. donovani by Chalcones , 2001, Antimicrobial Agents and Chemotherapy.

[71]  L. Gille,et al.  The ubiquinol/bc1 redox couple regulates mitochondrial oxygen radical formation. , 2001, Archives of biochemistry and biophysics.

[72]  F. Buckner,et al.  Potent Anti-Trypanosoma cruzi Activities of Oxidosqualene Cyclase Inhibitors , 2001, Antimicrobial Agents and Chemotherapy.

[73]  A. Schneider,et al.  Mitochondrial tRNA import: are there distinct mechanisms? , 2000, Trends in cell biology.

[74]  E. Berry,et al.  Leishmania tarentolae: a parallel isolation of cytochrome bc(1) and cytochrome c oxidase. , 2000, Experimental parasitology.

[75]  J. Rivail,et al.  Insights in the Peptide Hydrolysis Mechanism by Thermolysin: A Theoretical QM/MM study , 2000 .

[76]  H. Majumder,et al.  Luteolin, an Abundant Dietary Component is a Potent Anti-leishmanial Agent that Acts by Inducing Topoisomerase II-mediated Kinetoplast DNA Cleavage Leading to Apoptosis , 2000, Molecular medicine.

[77]  P. T. Englund,et al.  Specialized fatty acid synthesis in African trypanosomes: myristate for GPI anchors. , 2000, Science.

[78]  Joanne M. Morrisey,et al.  Resistance mutations reveal the atovaquone‐binding domain of cytochrome b in malaria parasites , 1999, Molecular microbiology.

[79]  R. C. Lin,et al.  Estrogen Up-regulates Apolipoprotein E (ApoE) Gene Expression by Increasing ApoE mRNA in the Translating Pool via the Estrogen Receptor α-Mediated Pathway* , 1997, The Journal of Biological Chemistry.

[80]  M. Badet-Denisot,et al.  Effects of pentamidine on polyamine level and biosynthesis in wild-type, pentamidine-treated, and pentamidine-resistant Leishmania. , 1997, Experimental parasitology.

[81]  A. Vaidya,et al.  Atovaquone, a Broad Spectrum Antiparasitic Drug, Collapses Mitochondrial Membrane Potential in a Malarial Parasite* , 1997, The Journal of Biological Chemistry.

[82]  R. Benne,et al.  The sequence of a small subunit of cytochrome c oxidase from Crithidia fasciculata which is homologous to mammalian subunit IV , 1996, FEBS letters.

[83]  K. Santhamma,et al.  Characterization of the respiratory chain of Leishmania donovani promastigotes. , 1995, Molecular and biochemical parasitology.

[84]  A. Bodley,et al.  Drug cytotoxicity assay for African trypanosomes and Leishmania species. , 1995, The Journal of infectious diseases.

[85]  A. Fairlamb,et al.  Characterisation of pentamidine-resistant Trypanosoma brucei brucei. , 1995, Molecular and biochemical parasitology.

[86]  T. Shapiro,et al.  In vivo inhibition of trypanosome mitochondrial topoisomerase II: effects on kinetoplast DNA maxicircles , 1994, Molecular and cellular biology.

[87]  S. Hajduk,et al.  The mitochondrial tRNAs of Trypanosoma brucei are nuclear encoded. , 1990, The Journal of biological chemistry.

[88]  R. Grady,et al.  Respiration of bloodstream forms of the parasite Trypanosoma brucei brucei is dependent on a plant-like alternative oxidase. , 1989, The Journal of biological chemistry.

[89]  T. Shapiro,et al.  Drug-promoted cleavage of kinetoplast DNA minicircles. Evidence for type II topoisomerase activity in trypanosome mitochondria. , 1989, The Journal of biological chemistry.

[90]  J. Turrens Possible role of the NADH-fumarate reductase in superoxide anion and hydrogen peroxide production in Trypanosoma brucei. , 1987, Molecular and biochemical parasitology.

[91]  M. Kron,et al.  Pentamidine: a review. , 1985, Reviews of infectious diseases.

[92]  R. Brun,et al.  Quantitative ultrastructural investigations of mitochondrial development in Leishmania donovani during transformation. , 1976, The Journal of protozoology.

[93]  R. Jaques,et al.  Drug-dependent differences in the development of tolerance to writhing in mice. , 1970, Pharmacology.

[94]  G. Attardi,et al.  The biogenesis of mitochondria. , 1970, The Biochemical journal.

[95]  G. Riou,et al.  Preparation and properties of nuclear and satellite deoxyribonucleic acid of Trypanosoma cruzi. , 1967, Journal of molecular biology.

[96]  Noemi Nosomi Taniwaki,et al.  Furazolidone is a selective in vitro candidate against Leishmania (L.) chagasi: an ultrastructural study , 2010 .

[97]  S. Adhya Leishmania mitochondrial tRNA importers. , 2008, The international journal of biochemistry & cell biology.

[98]  W. de Souza An introduction to the structural organization of parasitic protozoa. , 2008, Current pharmaceutical design.

[99]  M. Mather,et al.  Mitochondrial drug targets in apicomplexan parasites. , 2007, Current drug targets.

[100]  R. Madhubala,et al.  Roles for mitochondria in pentamidine susceptibility and resistance in Leishmania donovani. , 2006, Molecular and biochemical parasitology.

[101]  S. Bertholet,et al.  Programmed cell death in the unicellular protozoan parasite Leishmania , 2002, Cell Death and Differentiation.

[102]  P. Petit,et al.  On the evolution of programmed cell death: apoptosis of the unicellular eukaryote Leishmania major involves cysteine proteinase activation and mitochondrion permeabilization , 2002, Cell Death and Differentiation.

[103]  G. Schatz,et al.  The biogenesis of mitochondria. , 1970, The Biochemical journal.