Chitin is a functional component of the larval adhesive of barnacles

[1]  Md. Mizanur Rahman,et al.  The role of chitin-rich skeletal organic matrix on the crystallization of calcium carbonate in the crustose coralline alga Leptophytum foecundum , 2019, Scientific Reports.

[2]  M. Kosnik,et al.  Biomacromolecules in bivalve shells with crossed lamellar architecture , 2018, Journal of Materials Science.

[3]  F. Pereira,et al.  Comparative Analysis of the Adhesive Proteins of the Adult Stalked Goose Barnacle Pollicipes pollicipes (Cirripedia: Pedunculata) , 2018, Marine Biotechnology.

[4]  A. Mount,et al.  Chitin Facilitated Mineralization in the Eastern Oyster , 2018, Front. Mar. Sci..

[5]  Marleen Kamperman,et al.  Bioinspired Underwater Adhesives by Using the Supramolecular Toolbox , 2018, Advanced materials.

[6]  K. Wahl,et al.  Acorn Barnacles Secrete Phase‐Separating Fluid to Clear Surfaces Ahead of Cement Deposition , 2018, Advanced science.

[7]  A. Clare,et al.  Quantitative analysis of the complete larval settlement process confirms Crisp's model of surface selectivity by barnacles , 2018, Proceedings of the Royal Society B: Biological Sciences.

[8]  P. Qian,et al.  Toward understanding barnacle cementing by characterization of one cement protein-100kDa in Amphibalanus amphitrite. , 2018, Biochemical and biophysical research communications.

[9]  Feng Zhou,et al.  Bio-inspired reversible underwater adhesive , 2017, Nature Communications.

[10]  D J Mooney,et al.  Tough adhesives for diverse wet surfaces , 2017, Science.

[11]  J. Herbert Waite,et al.  Mussel adhesion – essential footwork , 2017, Journal of Experimental Biology.

[12]  Russell J. Stewart,et al.  The role of coacervation and phase transitions in the sandcastle worm adhesive system. , 2017, Advances in colloid and interface science.

[13]  Christopher R. So,et al.  Sequence basis of Barnacle Cement Nanostructure is Defined by Proteins with Silk Homology , 2016, Scientific Reports.

[14]  T. Ravasi,et al.  Transcriptome and Proteome Studies Reveal Candidate Attachment Genes during the Development of the Barnacle Amphibalanus Amphitrite , 2016, Front. Mar. Sci..

[15]  Christopher R. So,et al.  Imaging Active Surface Processes in Barnacle Adhesive Interfaces. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[16]  Morteza Asghari,et al.  A Review on Chitin and Chitosan Polymers: Structure, Chemistry, Solubility, Derivatives, and Applications , 2015 .

[17]  Marleen Kamperman,et al.  Jack of All Trades: Versatile Catechol Crosslinking Mechanisms , 2015 .

[18]  A. Mount,et al.  Synergistic roles for lipids and proteins in the permanent adhesive of barnacle larvae , 2014, Nature Communications.

[19]  A. Clare,et al.  Analysis of the Behaviours Mediating Barnacle Cyprid Reversible Adhesion , 2013, PloS one.

[20]  K. Kamino Mini-review: Barnacle adhesives and adhesion , 2013, Biofouling.

[21]  Marjan Barazandeh,et al.  Something Darwin didn't know about barnacles: spermcast mating in a common stalked species , 2013, Proceedings of the Royal Society B: Biological Sciences.

[22]  A. Clare,et al.  Metamorphosis in the Cirripede Crustacean Balanus amphitrite , 2012, PloS one.

[23]  J. Willis,et al.  Structural cuticular proteins from arthropods: annotation, nomenclature, and sequence characteristics in the genomics era. , 2010, Insect biochemistry and molecular biology.

[24]  Nick Aldred,et al.  Attachment strength is a key factor in the selection of surfaces by barnacle cyprids (Balanus amphitrite) during settlement , 2010, Biofouling.

[25]  J. Høeg,et al.  Antennular sensory organs in cyprids of balanomorphan cirripedes: standardizing terminology using Megabalanus rosa , 2009, Biofouling.

[26]  Pier Giorgio Righetti,et al.  Blue silver: A very sensitive colloidal Coomassie G‐250 staining for proteome analysis , 2004, Electrophoresis.

[27]  L. Paquet [Economic impact]. , 2004, SADJ : journal of the South African Dental Association = tydskrif van die Suid-Afrikaanse Tandheelkundige Vereniging.

[28]  H. Merzendorfer,et al.  Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases , 2003, Journal of Experimental Biology.

[29]  J. Høeg,et al.  Settlement behavior and antennulary biomechanics in cypris larvae of Balanus amphitrite (Crustacea: Thecostraca: Cirripedia) , 2002 .

[30]  N. Fusetani,et al.  Enzymatic isolation and culture of cement secreting cells from cypris larvae of the barnacle Megabalanus rosa , 1998 .

[31]  M. Mastalerz,et al.  Biodegradation of the chitin-protein complex in crustacean cuticle , 1998 .

[32]  Y. Kamiya,et al.  Cloning and Molecular Characterization of Plant Aldehyde Oxidase* , 1997, The Journal of Biological Chemistry.

[33]  Shimizu,et al.  Visualization of cement exocytosis in the cypris cement gland of the barnacle Megabalanus rosa , 1996, The Journal of experimental biology.

[34]  D. Rittschof,et al.  Settlement and behavior in relation to flow and surface in larval barnacles, Balanus amphitrite Darwin , 1984 .

[35]  M. N. Horst The biosynthesis of crustacean chitin. Isolation and characterization of polyprenol-linked intermediates from brine shrimp microsomes. , 1983, Archives of biochemistry and biophysics.

[36]  J. Cerbón,et al.  Lipid analysis of chitosomes, chitin-synthesizing microvesicles fromMucor rouxii , 1981 .

[37]  G. Walker,et al.  A study of the cement apparatus of the cypris larva of the barnacle Balanus balanoides , 1971 .

[38]  R. Hackman Studies on Chitin IV. The Occurrence of Complexes in Which Chitin and Protein are Covalently Linked , 1960 .

[39]  A. B. Foster,et al.  Application of Ethylenediaminetetra-acetic Acid in the Isolation of Crustacean Chitin , 1957, Nature.