On approximation of infinite-dimensional quantum channels

We develop an approximation approach to infinite-dimensional quantum channels based on a detailed investigation of continuity properties of entropic characteristics of quantum channels and operations (trace-nonincreasing completely positive maps) as functions of a pair “channel, input state.” Obtained results are then applied to the problems of continuity of the χ-capacity as a function of a channel, strong additivity of the χ-capacity for infinite-dimensional channels, and approximating representation for the convex closure of the output entropy of an arbitrary quantum channel.

[1]  Michael D. Westmoreland,et al.  Optimal signal ensembles , 1999, quant-ph/9912122.

[2]  G. Lindblad Expectations and entropy inequalities for finite quantum systems , 1974 .

[3]  D. Petz,et al.  Quantum Entropy and Its Use , 1993 .

[4]  P. Shor Additivity of the classical capacity of entanglement-breaking quantum channels , 2002, quant-ph/0201149.

[5]  M. E. Shirokov,et al.  On Properties of Quantum Channels Related to Their Classical Capacity , 2008 .

[6]  J. Eisert,et al.  On the quantification of entanglement in infinite-dimensional quantum systems , 2001, quant-ph/0112064.

[7]  Reinhard F. Werner,et al.  COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: On the notion of entanglement in Hilbert spaces , 2005 .

[8]  Александр Семенович Холево,et al.  Классические пропускные способности квантового канала с ограничением на входе@@@Entanglement-assisted capacities of constrained quantum channels , 2003 .

[9]  V. Paulsen Completely bounded maps and dilations , 1987 .

[10]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[11]  A. Holevo Statistical structure of quantum theory , 2001 .

[12]  M. Horodecki,et al.  General teleportation channel, singlet fraction and quasi-distillation , 1998, quant-ph/9807091.

[13]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[14]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[15]  Максим Евгеньевич Широков,et al.  О свойствах квантовых каналов, связанных с классической пропускной способностью@@@On properties of quantum channels related to their classical capacity , 2007 .

[16]  A. S. Holevo Complementary Channels and the Additivity Problem , 2005 .

[17]  Александр Семенович Холево,et al.  Непрерывные ансамбли и пропускная способность квантовых каналов бесконечной размерности@@@Continuous ensembles and the capacity of infinite-dimensional quantum channels , 2005 .

[18]  A. Wehrl General properties of entropy , 1978 .

[19]  Alexander Semenovich Holevo,et al.  Continuous Ensembles and the Capacity of Infinite-Dimensional Quantum Channels , 2006 .

[20]  K. Parthasarathy,et al.  Probability measures on metric spaces , 1967 .

[21]  A. Holevo Entanglement-Assisted Capacities of Constrained Quantum Channels , 2004 .

[22]  K. Parthasarathy PROBABILITY MEASURES IN A METRIC SPACE , 1967 .

[23]  M. Shirokov Communications in Mathematical Physics The Holevo Capacity of Infinite Dimensional Channels and the Additivity Problem , 2005 .

[24]  M. E. Shirokov,et al.  The Convex Closure of the Output Entropy of Infinite Dimensional Channels and the Additivity Problem , 2006 .

[25]  A. S. Holevo,et al.  On Shor’s Channel Extension and Constrained Channels , 2004 .

[26]  M. E. Shirokov,et al.  Properties of probability measures on the set of quantum states and their applications , 2006 .

[27]  Александр Семенович Холево,et al.  Комплементарные каналы и проблема аддитивности@@@Complementary channels and the additivity problem , 2006 .