On the geodetic hull number of Pk-free graphs

Partially answering a question posed by Araujo, Morel, Sampaio, Soares, and Weber, we show that computing the geodetic hull number of a given P 9 -free graph is NP-hard. Similarly, we show that computing the geodetic interval number of a given P 5 -free graph is NP-hard. Furthermore, we show that the geodetic hull number can be computed in polynomial time for { paw , P 5 } -free graphs, triangle-free graphs in which every six vertices induce at most one P 5 , and { C 3 , ź , C k - 2 , P k } -free graphs for every integer k.

[1]  Martin G. Everett,et al.  The hull number of a graph , 1985, Discret. Math..

[2]  Tinaz Ekim,et al.  Block decomposition approach to compute a minimum geodetic set , 2014, RAIRO Oper. Res..

[3]  Júlio Araújo,et al.  Hull number: P5-free graphs and reduction rules , 2016, Discret. Appl. Math..

[4]  Jayme Luiz Szwarcfiter,et al.  On the computation of the hull number of a graph , 2009, Discret. Math..

[5]  Jayme Luiz Szwarcfiter,et al.  Complexity results related to monophonic convexity , 2010, Discret. Appl. Math..

[6]  Nicolas Nisse,et al.  On the hull number of some graph classes , 2013, Theor. Comput. Sci..

[7]  Pierre Duchet,et al.  Convex sets in graphs, II. Minimal path convexity , 1987, J. Comb. Theory B.

[8]  M. Farber,et al.  Convexity in graphs and hypergraphs , 1986 .

[9]  Manoj Changat,et al.  Triangle path transit functions, betweenness and pseudo-modular graphs , 2009, Discret. Math..

[10]  F. Harary,et al.  The geodetic number of a graph , 1993 .

[11]  Lhouari Nourine,et al.  Polynomial Time Algorithms for Computing a Minimum Hull Set in Distance-Hereditary and Chordal Graphs , 2016, SIAM J. Discret. Math..

[12]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[13]  Feodor F. Dragan,et al.  Convexity and HHD-Free Graphs , 1999, SIAM J. Discret. Math..

[14]  Kolja B. Knauer,et al.  Convexity in Partial Cubes: The Hull Number , 2014, LATIN.

[15]  Jayme Luiz Szwarcfiter,et al.  Graphs with few P4's under the convexity of paths of order three , 2015, Discret. Appl. Math..

[16]  Sandi Klavzar,et al.  The All-Paths Transit Function of a Graph , 2001 .

[17]  Manoj Changat,et al.  On triangle path convexity in graphs , 1999, Discret. Math..

[18]  Jayme Luiz Szwarcfiter,et al.  On the Hull Number of Triangle-Free Graphs , 2010, SIAM J. Discret. Math..

[19]  Pim van 't Hof,et al.  Computing Minimum Geodetic Sets of Proper Interval Graphs , 2012, LATIN.

[20]  Stephan Olariu,et al.  On the Structure of Graphs with Few P4s , 1998, Discret. Appl. Math..

[21]  Jayme Luiz Szwarcfiter,et al.  Some remarks on the geodetic number of a graph , 2010, Discret. Math..