Biodegradable ZnO@polymer core-shell nanocarriers: pH-triggered release of doxorubicin in vitro.

[1]  Baohong Liu,et al.  pH-controlled delivery of doxorubicin to cancer cells, based on small mesoporous carbon nanospheres. , 2012, Small.

[2]  D. Chaudhary,et al.  Doxorubicin-conjugated mesoporous magnetic colloidal nanocrystal clusters stabilized by polysaccharide as a smart anticancer drug vehicle. , 2012, Small.

[3]  Yongyao Xia,et al.  ZnO@silica core–shell nanoparticles with remarkable luminescence and stability in cell imaging , 2012 .

[4]  Yuexian Liu,et al.  Efficient delivery of antitumor drug to the nuclei of tumor cells by amphiphilic biodegradable poly(L-aspartic acid-co-lactic acid)/DPPE co-polymer nanoparticles. , 2012, Small.

[5]  J. Zink,et al.  Nanovalve-controlled cargo release activated by plasmonic heating. , 2012, Journal of the American Chemical Society.

[6]  Jinming Gao,et al.  Multicolored pH-tunable and activatable fluorescence nanoplatform responsive to physiologic pH stimuli. , 2012, Journal of the American Chemical Society.

[7]  Jun Lin,et al.  Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres. , 2012, ACS nano.

[8]  Kit S Lam,et al.  Well-defined, reversible boronate crosslinked nanocarriers for targeted drug delivery in response to acidic pH values and cis-diols. , 2012, Angewandte Chemie.

[9]  N. Zheng,et al.  Photo‐ and pH‐Triggered Release of Anticancer Drugs from Mesoporous Silica‐Coated Pd@Ag Nanoparticles , 2012 .

[10]  Xiaoke Zhang,et al.  Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. , 2012, Biomaterials.

[11]  Katie R. Hurley,et al.  Critical Considerations in the Biomedical Use of Mesoporous Silica Nanoparticles. , 2012, The journal of physical chemistry letters.

[12]  F. Beltram,et al.  Multiphoton molecular photorelease in click-chemistry-functionalized gold nanoparticles. , 2011, Small.

[13]  Jin-Zhi Du,et al.  Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. , 2011, Journal of the American Chemical Society.

[14]  S. Santra,et al.  Cell-specific, activatable, and theranostic prodrug for dual-targeted cancer imaging and therapy. , 2011, Journal of the American Chemical Society.

[15]  S. Jeong,et al.  pH-Tunable calcium phosphate covered mesoporous silica nanocontainers for intracellular controlled release of guest drugs. , 2011, Angewandte Chemie.

[16]  Manojit Pramanik,et al.  Recent advances in colloidal gold nanobeacons for molecular photoacoustic imaging. , 2011, Contrast media & molecular imaging.

[17]  Huijun Zhao,et al.  Acid degradable ZnO quantum dots as a platform for targeted delivery of an anticancer drug , 2011 .

[18]  Younan Xia,et al.  Smart multifunctional hollow microspheres for the quick release of drugs in intracellular lysosomal compartments. , 2011, Angewandte Chemie.

[19]  H. Xiong,et al.  The application of ZnO luminescent nanoparticles in labeling mice. , 2011, Contrast media & molecular imaging.

[20]  Afsaneh Lavasanifar,et al.  Traceable multifunctional micellar nanocarriers for cancer-targeted co-delivery of MDR-1 siRNA and doxorubicin. , 2011, ACS nano.

[21]  Aifei Wang,et al.  pH-Triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. , 2011, Journal of the American Chemical Society.

[22]  Ying Liu,et al.  Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. , 2011, Small.

[23]  V. S. Lin,et al.  Light- and pH-responsive release of doxorubicin from a mesoporous silica-based nanocarrier. , 2011, Chemistry.

[24]  J. Kong,et al.  Tracking the endocytic pathway of recombinant protein toxin delivered by multiwalled carbon nanotubes. , 2010, ACS nano.

[25]  Elena Aznar,et al.  Enzyme-responsive intracellular controlled release using nanometric silica mesoporous supports capped with "saccharides". , 2010, ACS nano.

[26]  Jeremy N Skepper,et al.  pH-dependent toxicity of high aspect ratio ZnO nanowires in macrophages due to intracellular dissolution. , 2010, ACS nano.

[27]  J. F. Stoddart,et al.  pH-operated nanopistons on the surfaces of mesoporous silica nanoparticles. , 2010, Journal of the American Chemical Society.

[28]  Joseph M. DeSimone,et al.  Strategies in the design of nanoparticles for therapeutic applications , 2010, Nature Reviews Drug Discovery.

[29]  K. Barick,et al.  Nanoscale assembly of mesoporous ZnO: A potential drug carrier , 2010 .

[30]  R. Misra,et al.  New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: synthesis, characterization and in vitro drug delivery response. , 2010, Acta biomaterialia.

[31]  H. Xiong Photoluminescent ZnO nanoparticles modified by polymers , 2010 .

[32]  Jin-Zhi Du,et al.  A tumor-acidity-activated charge-conversional nanogel as an intelligent vehicle for promoted tumoral-cell uptake and drug delivery. , 2010, Angewandte Chemie.

[33]  Kemin Wang,et al.  Nanoparticle-based biocompatible and long-life marker for lysosome labeling and tracking. , 2010, Analytical chemistry.

[34]  L. J. Mueller,et al.  pH-responsive nanogated ensemble based on gold-capped mesoporous silica through an acid-labile acetal linker. , 2010, Journal of the American Chemical Society.

[35]  Pritha Bagchi,et al.  In situ imaging of metals in cells and tissues. , 2009, Chemical reviews.

[36]  T. Xia,et al.  Understanding biophysicochemical interactions at the nano-bio interface. , 2009, Nature materials.

[37]  V. S. Lin,et al.  Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. , 2009, Journal of the American Chemical Society.

[38]  Yongyao Xia,et al.  Sonochemical synthesis of highly luminescent zinc oxide nanoparticles doped with magnesium(II). , 2009, Angewandte Chemie.

[39]  Harald Fuchs,et al.  Nanomedizin – Herausforderung und Perspektiven , 2009 .

[40]  Mauro Ferrari,et al.  Nanomedicine--challenge and perspectives. , 2009, Angewandte Chemie.

[41]  A. Shiras,et al.  Natural gum reduced/stabilized gold nanoparticles for drug delivery formulations. , 2008, Chemistry.

[42]  Benjamin Gilbert,et al.  Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. , 2008, ACS nano.

[43]  Yongyao Xia,et al.  Stable aqueous ZnO@polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging. , 2008, Journal of the American Chemical Society.

[44]  L. Zhang,et al.  Nanoparticles in Medicine: Therapeutic Applications and Developments , 2008, Clinical pharmacology and therapeutics.

[45]  William R. Dichtel,et al.  Enzyme-responsive snap-top covered silica nanocontainers. , 2008, Journal of the American Chemical Society.

[46]  K. Geiger,et al.  Chemotherapy of glioblastoma in rats using doxorubicin‐loaded nanoparticles , 2004, International journal of cancer.

[47]  H. Haase,et al.  Uptake and intracellular distribution of labile and total Zn(II) in C6 rat glioma cells investigated with fluorescent probes and atomic absorption , 1999, Biometals.

[48]  L. Gold,et al.  A tenascin-C aptamer identified by tumor cell SELEX: Systematic evolution of ligands by exponential enrichment , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  H. Haase,et al.  Intracellular zinc distribution and transport in C6 rat glioma cells. , 2002, Biochemical and biophysical research communications.

[50]  G. Qiao,et al.  Some aspects of the properties and degradation of polyacrylamides. , 2002, Chemical reviews.