Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Device Engineering

We present a 18 mW fiber-coupled single-mode superluminescent diode with 85 nm bandwidth for application in optical coherence tomography (OCT). First, we describe the effect of quantum dot (QD) growth temperature on optical spectrum and gain, highlighting the need for the optimization of epitaxy for broadband applications. Then, by incorporating this improved material into a multicontact device, we show how bandwidth and power can be controlled. We then go on to show how the spectral shape influences the autocorrelation function, which exhibits a coherence length of <;11 μm, and relative noise is found to be 10 dB lower than that of a thermal source. Finally, we apply the optimum device to OCT of in vivo skin and show the improvement that can be made with higher power, wider bandwidth, and lower noise, respectively.

[1]  A. Martinez,et al.  1.3 μm quantum dot multi-section super-luminescent diode with extremely broad bandwidth (≫ 150 nm) , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[2]  R Smallwood,et al.  Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Skin Imaging , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[3]  M. Hopkinson,et al.  Tuning Superluminescent Diode Characteristics for Optical Coherence Tomography Systems by Utilizing a Multicontact Device Incorporating Wavelength-Modulated Quantum Dots , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[4]  Y.-C. Xin,et al.  1.3-$\mu$m Quantum-Dot Multisection Superluminescent Diodes With Extremely Broad Bandwidth , 2007, IEEE Photonics Technology Letters.

[5]  Jayanta Sarma,et al.  High power tapered superluminescent diodes using novel etched deflectors , 1997 .

[6]  Richard A. Hogg,et al.  Broad-band Superluminescent Light Emitting Diodes Incorporating Quantum Dots in Compositionally Modulated Quantum Wells , 2005 .

[7]  Jannick P Rolland,et al.  Estimation of longitudinal resolution in optical coherence imaging. , 2002, Applied optics.

[8]  W. Drexler Ultrahigh-resolution optical coherence tomography. , 2004, Journal of biomedical optics.

[9]  J G Fujimoto,et al.  Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. , 2001, Optics letters.

[10]  M. Hopkinson,et al.  High-Power 1.3-$\mu$m Quantum-Dot Superluminescent Light-Emitting Diode Grown by Molecular Beam Epitaxy , 2007, IEEE Photonics Technology Letters.

[11]  M. Tur,et al.  Source-induced noise in optical systems driven by low-coherence sources , 1990 .

[12]  J. Fujimoto,et al.  Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. , 2006, Optics letters.

[13]  M. Ibsen,et al.  Noise suppression of incoherent light using a gain-saturated SOA: implications for spectrum-sliced WDM systems , 2005, Journal of Lightwave Technology.

[14]  Petroff,et al.  Simulation model for self-ordering of strained islands in molecular-beam epitaxy. , 1996, Physical review. B, Condensed matter.

[15]  Eva Lankenau,et al.  OCT in Dermatology , 2008 .

[16]  J. Choe,et al.  Evolution of bimodal size-distribution on InAs coverage variation in as-grown InAs/GaAs quantum-dot heterostructures , 2004 .

[17]  Peter Blood,et al.  Characterization of semiconductor laser gain media by the segmented contact method , 2003 .

[18]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[19]  J. Fujimoto,et al.  Optical coherence tomography: technology and applications , 2002, IEEE/LEOS International Conference on Optical MEMs.

[20]  Gerhard Abstreiter,et al.  Influence of growth conditions on the photoluminescence of self-assembled InAs/GaAs quantum dots , 1999 .

[21]  M. Hopkinson,et al.  Multi-section quantum dot superluminescent diodes for spectral shape engineering , 2009 .

[22]  Zhongping Chen,et al.  Optimal wavelength for ultrahigh-resolution optical coherence tomography. , 2003, Optics express.

[23]  J. Duker,et al.  Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. , 2004, Optics express.

[24]  G Eisenstein,et al.  Noise properties of nonlinear semiconductor optical amplifiers. , 1996, Optics letters.

[25]  Lorenzo Occhi,et al.  Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers , 2005 .

[26]  Kristian M. Groom,et al.  Improved performance of 1.3μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer , 2004 .

[27]  M. Hopkinson,et al.  High-Power and Broadband Quantum Dot Superluminescent Diodes Centered at 1250 nm for Optical Coherence Tomography , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[28]  A. Fiore,et al.  Chirped multiple InAs quantum dot structure for wide spectrum device applications , 2005 .

[29]  Multi-contact quantum dot superluminescent diodes for optical coherence tomography , 2008, 2008 IEEE 21st International Semiconductor Laser Conference.

[30]  A. Stintz,et al.  The influence of quantum-well composition on the performance of quantum dot lasers using InAs-InGaAs dots-in-a-well (DWELL) structures , 2000, IEEE Journal of Quantum Electronics.

[31]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.