Polynomial Partitioning on Varieties of Codimension Two and Point-Hypersurface Incidences in Four Dimensions
暂无分享,去创建一个
[1] Joe W. Harris,et al. Principles of Algebraic Geometry , 1978 .
[2] Haim Kaplan,et al. Unit Distances in Three Dimensions , 2012, Comb. Probab. Comput..
[3] Marc Chardin,et al. Une majoration de la fonction de Hilbert et ses conséquences pour l'interpolation algébrique , 1989 .
[4] József Solymosi,et al. An Incidence Theorem in Higher Dimensions , 2012, Discret. Comput. Geom..
[5] S. Basu,et al. Algorithms in real algebraic geometry , 2003 .
[6] J. Milnor. On the Betti numbers of real varieties , 1964 .
[7] Haim Kaplan,et al. Simple Proofs of Classical Theorems in Discrete Geometry via the Guth–Katz Polynomial Partitioning Technique , 2011, Discret. Comput. Geom..
[8] R. Thom. Sur L'Homologie des Varietes Algebriques Réelles , 1965 .
[9] Saugata Basu,et al. Refined Bounds on the Number of Connected Components of Sign Conditions on a Variety , 2011, Discret. Comput. Geom..
[10] Patrice Philippon,et al. Erratum to “Régularité et interpolation” , 2002 .
[11] S. Basu,et al. On a real analog of Bezout inequality and the number of connected components of sign conditions , 2013, 1303.1577.
[12] Martin Sombra. Bounds for the Hubert function of polynomial ideals and for the degrees in the Nullstellensatz , 1996 .
[13] Kenneth L. Clarkson,et al. Combinatorial complexity bounds for arrangements of curves and surfaces , 2015, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.
[14] J JacobFox,et al. A semi-algebraic version of Zarankiewicz's problem , 2014 .
[15] Leonidas J. Guibas,et al. Combinatorial complexity bounds for arrangements of curves and spheres , 1990, Discret. Comput. Geom..
[16] S. Łojasiewicz. Introduction to Complex Analytic Geometry , 1991 .
[17] J. Pach,et al. A semi-algebraic version of Zarankiewicz's problem , 2014, 1407.5705.
[18] Micha Sharir,et al. Incidences in three dimensions and distinct distances in the plane , 2010, Combinatorics, Probability and Computing.
[19] Larry Guth,et al. On the Erdos distinct distance problem in the plane , 2010, 1011.4105.
[20] L. Guth,et al. On the Erdős distinct distances problem in the plane , 2015 .
[21] Micha Sharir,et al. On the Number of Incidences Between Points and Curves , 1998, Combinatorics, Probability and Computing.
[22] Zuzana Patáková,et al. Multilevel Polynomial Partitions and Simplified Range Searching , 2014, Discret. Comput. Geom..
[23] Joshua Zahl,et al. An improved bound on the number of point-surface incidences in three dimensions , 2011, Contributions Discret. Math..
[24] Yu. V. Nesterenko,et al. ESTIMATES FOR THE CHARACTERISTIC FUNCTION OF A PRIME IDEAL , 1985 .
[25] Endre Szemerédi,et al. Extremal problems in discrete geometry , 1983, Comb..