Polynomial Partitioning on Varieties of Codimension Two and Point-Hypersurface Incidences in Four Dimensions

We present a polynomial partitioning theorem for finite sets of points in the real locus of an irreducible complex algebraic variety of codimension at most two. This result generalizes the polynomial partitioning theorem on the Euclidean space of Guth and Katz, and its extension to hypersurfaces by Zahl and by Kaplan, Matoušek, Sharir and Safernová. We also present a bound for the number of incidences between points and hypersurfaces in the four-dimensional Euclidean space. It is an application of our partitioning theorem together with the refined bounds for the number of connected components of a semi-algebraic set by Barone and Basu.

[1]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[2]  Haim Kaplan,et al.  Unit Distances in Three Dimensions , 2012, Comb. Probab. Comput..

[3]  Marc Chardin,et al.  Une majoration de la fonction de Hilbert et ses conséquences pour l'interpolation algébrique , 1989 .

[4]  József Solymosi,et al.  An Incidence Theorem in Higher Dimensions , 2012, Discret. Comput. Geom..

[5]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[6]  J. Milnor On the Betti numbers of real varieties , 1964 .

[7]  Haim Kaplan,et al.  Simple Proofs of Classical Theorems in Discrete Geometry via the Guth–Katz Polynomial Partitioning Technique , 2011, Discret. Comput. Geom..

[8]  R. Thom Sur L'Homologie des Varietes Algebriques Réelles , 1965 .

[9]  Saugata Basu,et al.  Refined Bounds on the Number of Connected Components of Sign Conditions on a Variety , 2011, Discret. Comput. Geom..

[10]  Patrice Philippon,et al.  Erratum to “Régularité et interpolation” , 2002 .

[11]  S. Basu,et al.  On a real analog of Bezout inequality and the number of connected components of sign conditions , 2013, 1303.1577.

[12]  Martin Sombra Bounds for the Hubert function of polynomial ideals and for the degrees in the Nullstellensatz , 1996 .

[13]  Kenneth L. Clarkson,et al.  Combinatorial complexity bounds for arrangements of curves and surfaces , 2015, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[14]  J JacobFox,et al.  A semi-algebraic version of Zarankiewicz's problem , 2014 .

[15]  Leonidas J. Guibas,et al.  Combinatorial complexity bounds for arrangements of curves and spheres , 1990, Discret. Comput. Geom..

[16]  S. Łojasiewicz Introduction to Complex Analytic Geometry , 1991 .

[17]  J. Pach,et al.  A semi-algebraic version of Zarankiewicz's problem , 2014, 1407.5705.

[18]  Micha Sharir,et al.  Incidences in three dimensions and distinct distances in the plane , 2010, Combinatorics, Probability and Computing.

[19]  Larry Guth,et al.  On the Erdos distinct distance problem in the plane , 2010, 1011.4105.

[20]  L. Guth,et al.  On the Erdős distinct distances problem in the plane , 2015 .

[21]  Micha Sharir,et al.  On the Number of Incidences Between Points and Curves , 1998, Combinatorics, Probability and Computing.

[22]  Zuzana Patáková,et al.  Multilevel Polynomial Partitions and Simplified Range Searching , 2014, Discret. Comput. Geom..

[23]  Joshua Zahl,et al.  An improved bound on the number of point-surface incidences in three dimensions , 2011, Contributions Discret. Math..

[24]  Yu. V. Nesterenko,et al.  ESTIMATES FOR THE CHARACTERISTIC FUNCTION OF A PRIME IDEAL , 1985 .

[25]  Endre Szemerédi,et al.  Extremal problems in discrete geometry , 1983, Comb..