Flow boiling in microgravity: Part 2 - Critical heat flux interfacial behavior, experimental data, and model

[1]  Jeffrey R. Mackey,et al.  Flow boiling in microgravity: Part 1 – Interfacial behavior and experimental heat transfer results , 2015 .

[2]  I. Mudawar,et al.  Investigation of localized dryout versus CHF in saturated flow boiling , 2013 .

[3]  I. Mudawar,et al.  Criteria for negating the influence of gravity on flow boiling critical heat flux with two-phase inlet conditions , 2013 .

[4]  Jitendra A. Joshi,et al.  Workshop on Critical Issues in Microgravity Fluids, Transport, and Reaction Processes in Advanced Human Support Technology , 2013 .

[5]  I. Mudawar,et al.  Investigation of the influence of orientation on critical heat flux for flow boiling with two-phase inlet , 2013 .

[6]  Issam Mudawar,et al.  Recent Advances in High-Flux, Two-Phase Thermal Management , 2013 .

[7]  L. Tadrist,et al.  Pressure drop and void fraction during flow boiling in rectangular minichannels in weightlessness , 2013 .

[8]  Chirag R. Kharangate,et al.  Photographic study and modeling of critical heat flux in horizontal flow boiling with inlet vapor void , 2012 .

[9]  Chirag R. Kharangate,et al.  Experimental and theoretical study of critical heat flux in vertical upflow with inlet vapor void , 2012 .

[10]  I. Mudawar Two-Phase Microchannel Heat Sinks: Theory, Applications, and Limitations , 2011 .

[11]  Shuangfeng Wang,et al.  Bubble Behavior and Heat Transfer in Quasi-Steady Pool Boiling in Microgravity , 2009 .

[12]  I. Mudawar,et al.  Theoretical and experimental study of the effects of spray inclination on two-phase spray cooling and critical heat flux , 2008 .

[13]  I. Mudawar,et al.  CHF model for subcooled flow boiling in Earth gravity and microgravity , 2007 .

[14]  Hui Zhang,et al.  Photographic study of high-flux subcooled flow boiling and critical heat flux ☆ , 2007 .

[15]  I. Mudawar,et al.  Correlation of critical heat flux in hybrid jet impingement/micro-channel cooling scheme , 2006 .

[16]  I. Mudawar,et al.  Experimental and numerical investigation of single-phase heat transfer using a hybrid jet-impingement/micro-channel cooling scheme , 2006 .

[17]  I. Mudawar,et al.  Flow boiling CHF in microgravity , 2005 .

[18]  I. Mudawar,et al.  A Method for Assessing the Importance of Body Force on Flow Boiling CHF , 2004 .

[19]  I. Mudawar,et al.  Investigation of interfacial behavior during the flow boiling CHF transient , 2004 .

[20]  Lanchao Lin,et al.  Heat transfer characteristics of spray cooling in a closed loop , 2003 .

[21]  I. Mudawar,et al.  Experimental and theoretical study of orientation effects on flow boiling CHF , 2002 .

[22]  T. Fujii,et al.  A Study of Gas‐Liquid Two‐Phase Flow in a Horizontal Tube Under Microgravity , 2002, Annals of the New York Academy of Sciences.

[23]  Jungho Kim,et al.  Pool boiling heat transfer on small heaters: effect of gravity and subcooling , 2002 .

[24]  I. Mudawar,et al.  Experimental assessment of the effects of body force, surface tension force, and inertia on flow boiling CHF , 2002 .

[25]  H. Lee,et al.  Heat transfer correlation for boiling flows in small rectangular horizontal channels with low aspect ratios , 2001 .

[26]  J. Chung,et al.  An experimental study of critical heat flux (CHF) in microgravity forced-convection boiling , 2001 .

[27]  I. Mudawar,et al.  Critical heat flux (CHF) for water flow in tubes—II.: Subcooled CHF correlations , 2000 .

[28]  I. Mudawar,et al.  Critical heat flux (CHF) for water flow in tubes—I. Compilation and assessment of world CHF data , 2000 .

[29]  I. Mudawar,et al.  Critical heat flux in a long, rectangular channel subjected to one-sided heating—I. flow visualization , 1999 .

[30]  I. Mudawar,et al.  Critical heat flux in a long, rectangular channel subjected to one-sided heating—II. Analysis of critical heat flux data , 1999 .

[31]  H. Ohta,et al.  Experiments on microgravity boiling heat transfer by using transparent heaters , 1997 .

[32]  Issam Mudawar,et al.  An Ultra-High Power Two-Phase Jet-Impingement Avionic Clamshell Module , 1996 .

[33]  L. Zhao,et al.  Pressure drop in gas-liquid flow at microgravity conditions , 1996 .

[34]  Y. Mori,et al.  Pool Boiling of n-Pentane, CFC-113, and Water Under Reduced Gravity: Parabolic Flight Experiments With a Transparent Heater , 1995 .

[35]  I. Mudawar,et al.  Effects of heater length and orientation on the trigger mechanism for near-saturated flow boiling critical heat flux. I: Photographic study and statistical characterization of the near-wall interfacial features , 1995 .

[36]  I. Mudawar,et al.  Effects of heater length and orientation on the trigger mechanism for near-saturated flow boiling critical heat flux—II. Critical heat flux model , 1995 .

[37]  I. Mudawar,et al.  CHF mechanism in flow boiling from a short heated wall—II. Theoretical CHF model , 1993 .

[38]  I. Mudawar,et al.  CHF mechanism in flow boiling from a short heated wall—I. Examination of near-wall conditions with the aid of photomicrography and high-speed video imaging , 1993 .

[39]  D. C. Wadsworth,et al.  Enhancement of Single-Phase Heat Transfer and Critical Heat Flux From an Ultra-High-Flux Simulated Microelectronic Heat Source to a Rectangular Impinging Jet of Dielectric Liquid , 1992 .

[40]  Kotaro Tanaka,et al.  Observational Study of Pool Boiling under Microgravity , 1992 .

[41]  E. G. Keshock,et al.  Measurements and correlation of two-phase pressure drop under microgravity conditions , 1991 .

[42]  I. Mudawar,et al.  Microelectronic Cooling by Enhanced Pool Boiling of a Dielectric Fluorocarbon Liquid , 1989 .

[43]  C. Lee,et al.  A mechanistic critical heat flux model for subcooled flow boiling based on local bulk flow conditions , 1988 .

[44]  J. Weisman,et al.  Prediction of critical heat flux in flow boiling at low qualities , 1983 .

[45]  W. Hebel,et al.  A contribution to the hydrodynamics of boiling crisis in a forced flow of water , 1981 .

[46]  Yoshiro Katto,et al.  Study of the Mechanism of Burn-Out in Boiling System of High Burn-Out Heat Flux , 1973 .

[47]  L. Tong Boundary-layer analysis of the flow boiling crisis , 1968 .

[48]  H. J.,et al.  Hydrodynamics , 1924, Nature.

[49]  I. Mudawar Two-Phase Micro-Channel Heat Sinks: Theory, Applications and Limitations , 2011 .

[50]  C. Le Niliot,et al.  BOILING HEAT TRANSFER IN A VERTICAL MICROCHANNEL: LOCAL ESTIMATION DURING FLOW BOILING WITH A NON INTRUSIVE METHOD , 2009 .

[51]  Christophe Le Niliot,et al.  Flow Boiling in Minichannels Under Normal, Hyper-, and Microgravity : Local Heat Transfer Analysis Using Inverse Methods , 2007 .

[52]  L. Tadrist,et al.  Flow Boiling in Minichannels Under Normal, Hyper and Microgravity: Frictional Pressure Loss and Flow Patterns , 2007 .

[53]  J. E. GALLOWAYt CHF mechanism in flow boiling from a short heated wall-II . Theoretical CH F model , 2005 .

[54]  R. Webb The Evolution of Enhanced Surface Geometries for Nucleate Boiling , 1981 .

[55]  L. Rosenhead Theoretical Hydrodynamics , 1960, Nature.