Can 21-cm observations discriminate between high-mass and low-mass galaxies as reionization sources?

The prospect of detecting the first galaxies by observing their impact on the intergalactic medium as they reionized it during the first billion years leads us to ask whether such indirect observations are capable of diagnosing which types of galaxies were most responsible for reionization. We attempt to answer this by considering a set of large-scale radiative transfer simulations of reionization in sufficiently large volumes to make statistically meaningful predictions of observable signatures, while also directly resolving all atomically-cooling halos down to 10^8 M_solar. We focus here on predictions of the 21-cm background, to see if upcoming observations are capable of distinguishing a universe ionized primarily by high-mass halos from one in which both high-mass and low-mass halos are responsible, and to see how these results depend upon the uncertain source efficiencies. We find that 21-cm fluctuation power spectra observed by the first generation EoR/21-cm radio interferometer arrays should be able to distinguish the case of reionization by high-mass halos alone from that by both high- and low-mass halos, together. Some reionization scenarios yield very similar power spectra and rms evolution and thus can only be discriminated by their different mean reionization history and 21-cm PDF distributions. We find that the skewness of the 21-cm PDF distribution smoothed over LOFAR-like window shows a clear feature correlated with the rise of the rms due to patchiness. Measurements of the mean photoionization rates are sensitive to the average density of the regions being studied and therefore could be strongly skewed in certain cases. (abridged)

[1]  Judd D. Bowman,et al.  Constraints on Fundamental Cosmological Parameters with Upcoming Redshifted 21 cm Observations , 2005, astro-ph/0512262.

[2]  P. Shapiro,et al.  Reionization in a cold dark matter universe: The feedback of galaxy formation on the intergalactic medium , 1994 .

[4]  S. Zaroubi,et al.  Fast Large-Scale Reionization Simulations , 2008, 0809.1326.

[5]  Martina M. Friedrich,et al.  Topology and Sizes of HII Regions during Cosmic Reionization , 2010, 1006.2016.

[6]  S. White,et al.  An analytic model for the spatial clustering of dark matter haloes , 1995, astro-ph/9512127.

[7]  J. Bond,et al.  Current models of the observable consequences of cosmic reionization and their detectability , 2007, astro-ph/0702099.

[8]  Garching,et al.  Detection and extraction of signals from the epoch of reionization using higher-order one-point statistics , 2008, 0809.2428.

[9]  M. Rees,et al.  The Radiative Feedback of the First Cosmological Objects , 1999, astro-ph/9903336.

[10]  Mervyn J. Lynch,et al.  THE PRECISION ARRAY FOR PROBING THE EPOCH OF RE-IONIZATION: EIGHT STATION RESULTS , 2009, 0904.2334.

[11]  E. Komatsu,et al.  THE COSMIC NEAR-INFRARED BACKGROUND. II. FLUCTUATIONS , 2009, 0906.4552.

[12]  Simulating Cosmic Reionization at Large Scales I: the Geometry of Reionization , 2005, astro-ph/0512187.

[13]  Austin,et al.  Cosmic Structure Formation at High Redshift. , 2010, 1005.2502.

[14]  Max Tegmark,et al.  How well can we measure and understand foregrounds with 21-cm experiments? , 2011, 1106.0007.

[15]  N. Gnedin Cosmological Reionization by Stellar Sources , 1999, astro-ph/9909383.

[16]  Katrin Heitmann,et al.  The Halo Mass Function: High-Redshift Evolution and Universality , 2007, astro-ph/0702360.

[17]  B. Ciardi,et al.  Early reionization by the first galaxies , 2003 .

[18]  H. Trac,et al.  Cosmological H II Bubble Growth during Reionization , 2007, 0708.2425.

[19]  Self-regulated reionization , 2006, astro-ph/0607517.

[20]  Photoionization and the formation of dwarf galaxies , 1995, astro-ph/9509128.

[21]  Simulating cosmic reionization at large scales – II. The 21-cm emission features and statistical signals , 2006, astro-ph/0603518.

[22]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[23]  Kyoto,et al.  Measuring the History of Cosmic Reionization using the 21-cm PDF from Simulations , 2009, 0907.2932.

[24]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[25]  P. Di Matteo,et al.  The simulated 21 cm signal during the epoch of reionization : full modeling of the Ly-α pumping , 2008, 0808.0925.

[26]  C. Frenk,et al.  The halo mass function from the dark ages through the present day , 2006, astro-ph/0607150.

[27]  Richard G. McMahon,et al.  A luminous quasar at a redshift of z = 7.085 , 2011, Nature.

[28]  Liang Gao,et al.  Mass loss of galaxies due to an ultraviolet background , 2008, 0806.0378.

[29]  The morphology of H ii regions during reionization , 2006, astro-ph/0610094.

[30]  T. Nakamoto,et al.  The effects of radiative transfer on the reionization of an inhomogeneous universe , 2001 .

[31]  S. Okamura,et al.  COMPLETING THE CENSUS OF Lyα EMITTERS AT THE REIONIZATION EPOCH , 2011, 1104.2330.

[32]  Nickolay Y. Gnedin,et al.  Cosmological radiative transfer comparison project – II. The radiation-hydrodynamic tests , 2009, 0905.2920.

[33]  Matias Zaldarriaga,et al.  Cosmological Parameter Estimation Using 21 cm Radiation from the Epoch of Reionization , 2005, astro-ph/0512263.

[34]  Minihalo photoevaporation during cosmic reionization : evaporation times and photon consumption rates , 2004, astro-ph/0408408.

[35]  R. Teyssier,et al.  REIONIZATION SIMULATIONS POWERED BY GRAPHICS PROCESSING UNITS. I. ON THE STRUCTURE OF THE ULTRAVIOLET RADIATION FIELD , 2010, 1004.2503.

[36]  Matthias Steinmetz,et al.  The Effects of a Photoionizing Ultraviolet Background on the Formation of Disk Galaxies , 1996, astro-ph/9605043.

[37]  R. Barkana,et al.  Statistics of 21‐cm fluctuations in cosmic reionization simulations: PDFs and difference PDFs , 2010, 1005.3814.

[38]  J. Richard Bond,et al.  Halo Assembly Bias in Hierarchical Structure Formation , 2008, 0803.3453.

[39]  S. Veilleux,et al.  SEARCHING FOR z ∼ 7.7 Lyα EMITTERS IN THE COSMOS FIELD WITH NEWFIRM , 2011, 1106.6055.

[40]  J. Bond,et al.  The Kinetic Sunyaev-Zel'dovich Effect from Radiative Transfer Simulations of Patchy Reionization , 2007 .

[41]  Steven Furlanetto,et al.  Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe , 2006 .

[42]  Photoevaporation of cosmological minihaloes during reionization , 2003, astro-ph/0307266.

[43]  The Fate of the First Galaxies. I. Self-consistent Cosmological Simulations with Radiative Transfer , 2001, astro-ph/0110431.

[44]  Cosmic reionization by stellar sources: Population II stars , 2003, astro-ph/0303098.

[45]  U. Pen,et al.  The GMRT Epoch of Reionization experiment: a new upper limit on the neutral hydrogen power spectrum at z≈ 8.6 , 2010, 1006.1351.

[46]  Alan E. E. Rogers,et al.  The Murchison Widefield Array: Design Overview , 2009, Proceedings of the IEEE.

[47]  R. Sheth,et al.  An excursion set model of hierarchical clustering: ellipsoidal collapse and the moving barrier , 2001, astro-ph/0105113.

[48]  Austin,et al.  C2-ray: A new method for photon-conserving transport of ionizing radiation , 2005, astro-ph/0508416.

[49]  A. Mesinger,et al.  Ultraviolet radiative feedback during the advanced stages of reionization , 2008, 0806.3090.

[50]  Zurich,et al.  The effect of the intergalactic environment on the observability of Lyα emitters during reionization , 2007, 0711.2944.

[51]  Fermilab,et al.  Cosmological radiative transfer codes comparison project – I. The static density field tests , 2006, astro-ph/0603199.

[52]  Martin White The Mass of a halo , 2001 .

[53]  H. Trac,et al.  Comparison of reionization models: radiative transfer simulations and approximate, seminumeric models , 2010, 1003.3455.

[54]  H. Trac,et al.  Radiative Transfer Simulations of Cosmic Reionization. I. Methodology and Initial Results , 2006, astro-ph/0612406.

[55]  M. Zaldarriaga,et al.  The Growth of H II Regions During Reionization , 2004, astro-ph/0403697.

[56]  A. Jaffe,et al.  Secondary Cosmic Microwave Background Anisotropies from Cosmological Reionization , 2000, astro-ph/0008469.

[57]  M. Crocce,et al.  Transients from initial conditions in cosmological simulations , 2006, astro-ph/0606505.

[58]  G. Efstathiou Suppressing the formation of dwarf galaxies via photoionization , 1992 .

[59]  T. Sakamoto,et al.  A PHOTOMETRIC REDSHIFT OF z ∼ 9.4 FOR GRB 090429B , 2011, 1105.4915.

[60]  S. Okamura,et al.  STATISTICS OF 207 Lyα EMITTERS AT A REDSHIFT NEAR 7: CONSTRAINTS ON REIONIZATION AND GALAXY FORMATION MODELS , 2010, 1007.2961.

[61]  Characteristic scales during reionization , 2005, astro-ph/0507524.

[62]  S. Zaroubi,et al.  Power spectrum extraction for redshifted 21-cm Epoch of Reionization experiments: the LOFAR case , 2010, 1003.0965.

[63]  C. Baccigalupi,et al.  Reionization history from coupled cosmic microwave background/21-cm line data , 2005 .

[64]  G. Field The Spin Temperature of Intergalactic Neutral Hydrogen. , 1959 .

[65]  Martin White,et al.  Dark matter halo abundances, clustering and assembly histories at high redshift , 2007, 0706.0208.

[66]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[67]  G. Mellema,et al.  Hybrid Characteristics: 3D radiative transfer for parallel adaptive mesh refinement hydrodynamics , 2005, astro-ph/0505213.

[68]  P. Shapiro,et al.  THE INHOMOGENEOUS BACKGROUND OF H2-DISSOCIATING RADIATION DURING COSMIC REIONIZATION , 2008, 0807.2254.

[69]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[70]  Hugh Merz,et al.  Towards optimal parallel PM N-body codes: PMFAST , 2005 .

[71]  A. Rogers,et al.  A lower limit of Δz > 0.06 for the duration of the reionization epoch , 2010, Nature.

[72]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.